Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38793503

ABSTRACT

In the realm of modern architecture, the demand for materials that combine strength, durability, and aesthetic flexibility is ever-growing. Addressing this need, this paper presents a study on the innovative use of aluminum extrudates in construction. Focusing on the AA6005 alloy, which is known for its excellent balance of strength, corrosion resistance, and weldability, this research delves into the development of an extrusion process that yields thin-walled, lightweight, yet high-strength structural components. Using FEM simulations, a new extrudate of the AA6005A was developed. It is compatible with standard façade systems, with high-strength properties and a weight reduced by 20% compared to that of conventional extrudates made of the AA6063 alloy. Using CAD engineering and FEM simulations of aluminum extrusion process, an innovative die was designed for the extrusion process, ensuring uniform flow of metal from the bearing and minimizing the elastic deflection of the die. This resulted in an increase in the extrusion velocity of thin-walled extrudate from AA6005A by 24% compared to conventional profiles extruded from AA6063. As part of the research, a trial test was carried out in production conditions and the quality of the extrudates was tested by 3D optical scanning, mechanical and structural properties tests, and microstructure observation.

2.
Materials (Basel) ; 17(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612194

ABSTRACT

Austenitic stainless steels are very popular due to their high strength properties, ductility, excellent corrosion resistance and work hardening. This paper presents the test results for joining AISI 316Ti austenitic steel. The technologies used for joining were the most popular welding techniques such as TIG (welding with a non-consumable electrode in the shield of inert gases), MIG (welding with a consumable electrode in the shield of inert gases) as well as high-energy EBW welding (Electron Beam Welding) and plasma PAW (plasma welding). Microstructural examinations in the face, center and root areas of the weld revealed different contents of delta ferrite with skeletal or lathy ferrite morphology. Additionally, the presence of columnar grains at the fusion line and equiaxed grains in the center of the welds was found. Microstructural, X-ray and ferroscope tests showed the presence of different delta ferrite contents depending on the technology used. The highest content of delta ferrite was found in the TIG and PAW connectors, approximately 5%, and the lowest in the EBW connector, approximately 2%. Based on the tests carried out on the mechanical properties, it was found that the highest properties were achieved by the MIG joint (Rm, 616, Rp0.2 = 335 MPa), while the lowest were achieved by the PAW joint (Rm = 576, Rp0.2 = 315 MPa).

3.
Materials (Basel) ; 16(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37895613

ABSTRACT

Civilization and technical progress are not possible without energy. Dynamic economic growth translates into a systematic increase in demand for electricity. Ensuring the continuity and reliability of electricity supplies is one of the most important aspects of energy security in highly developed countries. Growing energy consumption results not only in the need to build new power plants but also in the need to expand and increase transmission capacity. Therefore, large quantities of electric cables are produced all over the world, and after some time, they largely become waste. Recycling of electric cables focuses on the recovery of metals, mainly copper and aluminum, while polymer insulation is often considered waste and ends up in landfills. Currently, more and more stringent regulations are being introduced, mainly environmental ones, which require maximizing the reduction in waste. This article provides a literature review on cable recycling, presenting the advantages and disadvantages of various recycling methods, including mechanical and material recycling. It has been found that currently, there are very large possibilities for recycling cables, and intensive scientific work is being carried out on their development, which is consistent with global climate policy.

4.
Materials (Basel) ; 16(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569925

ABSTRACT

The paper presents the results of tests of rapid solidification (RS) aluminum alloys with the addition of silicon (5%, 11%, and 20%). Casting by melt-spinning on the surface of an intensively cooled copper cylinder allowed to obtain a metallic material in the form of flakes, which were then consolidated in the process of pressing and direct extrusion. The effect of refinement on structural components after rapid solidification was determined. Rapidly solidified AlSi materials are characterized by a comparable size of Si particles, regardless of the silicon content, and the shape of these particles is close to spheroidal. Not only Si particles are fragmented, but also the Al-Si-Fe phase, which also changed its shape from irregular with sharp edges to regular and spherical. The melt-spinning process resulted in a fine-grained structure compared to materials obtained by gravity-casting and extrusion. The influence of the high-temperature compression test on the mechanical properties of rapidly solidified materials was analyzed, and the results were compared with those of gravity-cast materials. An increase in strength properties was found in the case of the AlSi5 RS alloy by 20%, in the case of AlSi11RS by 25%, and in the case of the alloy containing 20% Si by as much as 86% (tensile test). On the basis of the homogeneity of the particle distribution determined by the SEM method, it was found that rapid solidification is an effective method of increasing the strength properties and improving the plastic properties of Al-Si alloys.

5.
Materials (Basel) ; 16(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37512211

ABSTRACT

The paper presents the results of the joining tests of the EN AW-6082 T6 alloy. The materials were joined using the EBW high-energy (electron beam welding) and friction stir welding (FSW) methods. In the case of FSW welding, the following parameters were used: the linear speed was 355 mm/min, and the rotational speed of the welding tool was 710. In the case of EBW welding, the following parameters were used: accelerating voltage U = 120 kV, beam intensity I = 18.7 mA, welding speed v = 1600 mm/min and, in the case of a smoothing weld, U = 80 kV, beam intensity I = 17 mA, and welding speed v = 700 mm/min. Comprehensive microstructural tests of all welded joints (MO, SEM and TEM) and mechanical property tests (tensile and hardness tests) were carried out. The topographies of the fractures after the tensile test were also examined. Based on the results, it was found that the strength properties of the EBW joint were reduced by 23% and the FSW joint by 38% compared to the base material. A decrease in elongation was also noted, with an FSW elongation of 7.2% and an elongation of 2.7% for EBW. In the case of the EBW joint, magnesium evaporation was found in the weld during welding, while in the FSW joint, the dissolution of the Mg2Si particles responsible for strengthening the material during heat treatment to the T6 state was observed.

6.
Materials (Basel) ; 15(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36556825

ABSTRACT

In this article, the possibility of obtaining a solid plate from waste cable sheaths, by mechanical recycling, i.e., grinding, plasticising and pressing, is discussed-waste cable sheaths being pure PVC with a slight admixture of silicone. Press moulding was carried out under the following conditions: temperature 135 °C, heating duration 1 h and applied pressure 10 MPa. The yield point of the obtained solid plate obtained was 15.0 + -0.6 MPa, flexural strength 0.94 MPa, yield point 0.47 MPa and Charpy's impact strength 5.1 kJ/m2. The resulting solid plate does not differ significantly from the input material, in terms of mechanical strength, so, from the point of view of strength, that is, from a technical point of view, such promising processing of waste cables can be carried out successfully in industrial practice.

7.
Materials (Basel) ; 15(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35683264

ABSTRACT

Recovery of zinc and manganese from scrapped alkaline batteries were carried out in the following way: leaching in H2SO4 and selective precipitation of zinc and manganese by alkalization/neutralization. As a result of non-selective leaching, 95.6-99.7% Zn was leached and 83.7-99.3% Mn was leached. A critical technological parameter is the liquid/solid treatment (l/s) ratio, which should be at least 20 mL∙g-1. Selective leaching, which allows the leaching of zinc only, takes place with a leaching yield of 84.8-98.5% Zn, with minimal manganese co-leaching, 0.7-12.3%. The optimal H2SO4 concentration is 0.25 mol∙L-1. Precipitation of zinc and manganese from the solution after non-selective leaching, with the use of NaOH at pH = 13, and then with H2SO4 to pH = 9, turned out to be ineffective: the manganese concentrate contained 19.9 wt.% Zn and zinc concentrate, and 21.46 wt.% Mn. Better selectivity results were obtained if zinc was precipitated from the solution after selective leaching: at pH = 6.5, 90% of Zn precipitated, and only 2% manganese. Moreover, the obtained concentrate contained over 90% of ZnO. The precipitation of zinc with sodium phosphate and sodium carbonate is non-selective, despite its relatively high efficiency: up to 93.70% of Zn and 4.48-93.18% of Mn and up to 95.22% of Zn and 19.55-99.71% Mn, respectively for Na3PO4 and Na2CO3. Recovered zinc and manganese compounds could have commercial values with suitable refining processes.

8.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329538

ABSTRACT

This article presents the results of research on the recycling of non-ferrous metals from PCB scrap using melting in metallic lead. The idea of this process is to dissolve (transfer) metals from PCB scrap in lead, and then liquation them by cooling the lead-metals alloy. PCB scrap was crushed and then melted into liquid lead. The lead after process was then poured into the casting mold and its chemical composition was examined. Among the various metals in the PCB scrap, copper and tin in particular are dissolved in lead. The more scrap dissolved in lead, the higher the concentration of copper and tin in the alloy. The highest obtained concentration of copper in lead were about 2.2 wt.%, and for tin about 0.8 wt.%.

9.
Materials (Basel) ; 15(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35160920

ABSTRACT

This article presents a study on the influence of temperature and time of multi-variant heat treatment on the structure and properties of materials produced in direct metal laser sintering (DMLS) and casting technology. The materials were manufactured in the form of cuboidal elements with a cross-section of 1.5 mm × 15 mm and a length of 60 mm. The samples prepared in this way had a similar volume, but due to the production technology the metal crystallization took place at different rates and directions. In the cast, the direction of heat transfer was toward the mold, and the DMLS was directed locally layer by layer. The small thickness of the cast material allowed reaching conditions similar to the DMLS cooling process. Both DMLS and cast samples show similar mechanical properties (hardness) achieved after long ageing time, i.e., 16 h at 170 °C. The maximum hardness was observed for 8 h. In the DMLS samples, in contrast to cast samples, no lamellar precipitates of silicon were observed, which indicates their better resistance to cracking.

10.
Materials (Basel) ; 14(17)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34501156

ABSTRACT

This article presents a method of reusing aluminum scrap from alloy 6082 using the hot extrusion process. Aluminum chips from milling and turning processes, having different sizes and morphologies, were cold pressed into briquettes prior to hot pressing at 400 °C at a ram speed of 2 mm/s. The study of mechanical properties combined with observations of the microstructures, as well as tests of density, hardness and electrical conductivity were carried out. On the basis of the results, the possibility of using the plastic consolidation method and obtaining materials with similar to a solid ingot mechanical properties, density and electrical conductivity was proven. The possibility of modifying the surface of consolidated aluminum scrap was tested in processes examples: polishing, anodizing and coloring. For this purpose, a number of analyses and tests were carried out: comparison of colors on color histograms, roughness determination, SEM and chemical composition analysis. It has been proven there are differences in the surface treatment of the solid material and that of scrap consolidation, and as such, these differences may significantly affect the final quality.

11.
Materials (Basel) ; 14(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207671

ABSTRACT

Materials were obtained from commercial zirconium powders. 1 mass%, 2.5 mass% and 16 mass% of niobium powders were used as the reinforcing phase. The SPS method and the extrusion method classified as the SPD method were used. Relative density materials of up to 98% were obtained. The microstructure of the sintered Zr-xNb materials differs from that of the extruded materials. Due to the flammability of zirconium powders, no mechanical alloying was used; only mixing of zirconium and niobium powders in water and isopropyl alcohol. Niobium was grouped in clusters with an average niobium particle size of about 10 µm up to 20 µm. According to the Zr-Nb phase equilibrium system, the stable phase at RT was the hexagonal α-phase. The tests were carried out for materials without the additional annealing process. The effect of niobium as a ß-Zr phase stabilizer is confirmed by XRD. Materials differed in their phase composition, and for both methods the ß-Zr phase was present in obtained materials. A very favorable effect of niobium on the increase in corrosion resistance was observed, compared to the material obtained from the powder without the addition of niobium.

12.
Materials (Basel) ; 14(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202134

ABSTRACT

Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C. Fractography analysis of materials at room temperature and 400 °C was carried out. The research took into account the anisotropy of the materials obtained in the extrusion process. For the nonequilibrium SPS process, ZrCu2 and Cu10Zr7 intermetallic compounds formed in the material at sintering temperature. Extruded materials were composed mainly of α-Zr and ZrCu2. The presence of intermetallic compounds affected the reduction in the strength properties of the tested materials. The highest strength value of 205 MPa was obtained for the extruded Zr-2.5Cu, for which the samples were cut in the direction of extrusion. For materials with 10 wt.% copper, more participation of the intermetallic phase was formed, which lowered the mechanical properties of the obtained materials. In addition to brittle intermetallic phases, the materials were characterized by residual porosity, which also reduced the strength properties.

13.
Materials (Basel) ; 14(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200220

ABSTRACT

Recycling of raw materials and is crucial for the production of new products for the global economy. The aim here is, on the one hand, to reduce energy consumption, and, on the other hand, to obtain materials with similar functional properties. The study undertook research on the possibility of processing AlSi11 aluminum chips by compaction and co-extruding to obtain a product in the form of a flat bar with mechanical properties not lower than those of the cast materials. The performed tests and the developed technique allowed to obtain flat bars with more favorable mechanical properties (Yield Strength YS ≥ 155 MPa; Ultimate Tensile Strength UTS ≥ 212 MPa) than the castings (YS ≥ 70 MPa ≥ 150 MPa). The weldability evaluation tests revealed that the material is susceptible to porosity. The presence of pores, which reduces the cross-section (up to 60%), reduces the tensile strength (up to 20 MPa). The typical joint structure and plasticity is obtained, which indicate the possibility of tensile strength improvement.

14.
Materials (Basel) ; 14(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922779

ABSTRACT

The paper is devoted to highlighting the potential application of the quantitative imaging technique through results associated with work hardening, strain rate and heat generated during elastic and plastic deformation. The aim of the research presented in this article is to determine the relationship between deformation in the uniaxial tensile test of samples made of 1-mm-thick nickel-based superalloys and their change in temperature during deformation. The relationship between yield stress and the Taylor-Quinney coefficient and their change with the strain rate were determined. The research material was 1-mm-thick sheets of three grades of Inconel alloys: 625 HX and 718. The Aramis (GOM GmbH, a company of the ZEISS Group) measurement system and high-sensitivity infrared thermal imaging camera were used for the tests. The uniaxial tensile tests were carried out at three different strain rates. A clear tendency to increase the sample temperature with an increase in the strain rate was observed. This conclusion applies to all materials and directions of sample cutting investigated with respect to the sheet-rolling direction. An almost linear correlation was found between the percent strain and the value of the maximum surface temperature of the specimens. The method used is helpful in assessing the extent of homogeneity of the strain and the material effort during its deformation based on the measurement of the surface temperature.

15.
Materials (Basel) ; 13(23)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260432

ABSTRACT

Continuous pressure put on researchers all over the world these days to design materials of improved properties create opportunities to study new methods of production in conjunction with entirely new and innovative materials such as alloys or composites. The authors in the current research manufactured aluminium reinforced with glass fibre (GF) using metallurgical synthesis, which is an unconventional and not sufficiently studied method of production. The composites with 1, 2 and 5 wt.% of glass fibre were produced with additional material obtained using consolidation of aluminium powder in extrusion process as reference material with 5 wt.% of glass fibre. All the materials were subjected to series of tests in order to determine their microstructure, density, electrical properties, hardness and susceptibility to plastic working in the compression test. It was found that glass fibre during metallurgical synthesis of aluminium composite partially melted and thus did not reinforce the material as well as during extrusion, which has been observed not only in the scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) analysis but also in the analysis of macroscopic physical and mechanical properties. Based on the analysed samples, it may be stated that electrical conductivity of the samples obtained via metallurgical synthesis is higher than might be estimated on the basis of the rule of mixtures and glass fibre content and concerning the sample with 5 wt.% of GF is higher (32.1 MS/m) than of the reference material obtained in extrusion process (30.6 MS/m). Similar situation has been observed in terms of hardness of the tested samples where a minor increase in hardness was noticeable as the amount of glass fibre increased in the composites obtained by metallurgical synthesis. It is believed to be related to the melting of glass fibre, which reduced the volume fraction of GF containing mainly silicon oxides and their diffusion into the aluminium matrix, thus causing solid solution strengthening.

16.
Materials (Basel) ; 13(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126476

ABSTRACT

Constant tendency toward the improvement of the material properties nowadays creates opportunities for the scientists all over the world to design and manufacture new alloys almost every day. Considering the fact that companies all over the world desire alloys with the highest values of mechanical properties often coexisting with a reasonable electrical conductivity made it necessary to develop new materials based on Cu, such as CuMg alloys. However, before such new material may be mass produced it must undergo a series of tests in order to determine the production technology, its parameters and influence on the chemical composition, microstructural properties, and both mechanical and physical properties of CuMg alloys. The research tests have shown that with the increase of the casting feed the Brinell's hardness of each material slightly increases (by 5 HB2.5/62.5). There is little to none impact of the casting feed on the electrical conductivity, values of which are between 20.6 and 21.4 MS/m (around 40% IACS-International Annealed Copper Standard) depending on the Mg content. The conducted scanning electron microstopy (SEM) analysis has shown that the magnesium precipitations are evenly distributed among the volume of the alloy, however, a significant difference in the density and shape of the Cu + Cu2Mg aggregates was noticed regarding various casting feed. Static compression test proved that these alloys may be subjected to strain hardening as the hardness of the material after compression increases by approximately 40 HB2.5/62.5.

SELECTION OF CITATIONS
SEARCH DETAIL
...