Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(33): 18197-18205, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34612283

ABSTRACT

Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.


Subject(s)
Agrobacterium/metabolism , Bacterial Proteins/metabolism , Light , Phytochrome/metabolism , Temperature , Tetrapyrroles/metabolism , Agrobacterium/chemistry , Bacterial Proteins/chemistry , Phytochrome/chemistry , Tetrapyrroles/chemistry
2.
Biochemistry ; 58(33): 3504-3519, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31348653

ABSTRACT

Bacteriophytochromes harboring a biliverdin IXα (BV) chromophore undergo photoinduced reaction cascades to switch between physiologically inactive and active states. Employing vibrational spectroscopic and computational methods, we analyzed the role of propionic substituents of BV in the transformations between parent states Pr and Pfr in prototypical (Agp1) and bathy (Agp2) phytochromes from Agrobacterium fabrum. Both proteins form adducts with BV monoesters (BVM), esterified at propionic side chain B (PsB) or C (PsC), but in each case, only one monoester adduct is reactive. In the reactive Agp2-BVM-B complex (esterified at ring B), the Pfr dark state displays the structural properties characteristic of bathy phytochromes, including a protonated PsC. As in native Agp2, PsC is deprotonated in the final step of the Pfr phototransformation. However, the concomitant α-helix/ß-sheet secondary structure change of the tongue is blocked at the stage of unfolding of the coiled loop region. This finding and the shift of the tautomeric equilibrium of BVM toward the enol form are attributed to the drastic changes in the electrostatic potential. The calculations further suggest that deprotonation of PsC and the protonation state of His278 control the reactivity of the enol tautomer, thereby accounting for the extraordinarily slow thermal reversion. Although strong perturbations of the electrostatic potential are also found for Agp1-BVM, the consequences for the Pr-to-Pfr phototransformation are less severe. Specifically, the structural transition of the tongue is not impaired and thermal reversion is even accelerated. The different response of Agp1 and Agp2 to monoesterification of BV points to different photoconversion mechanisms.


Subject(s)
Agrobacterium/metabolism , Models, Molecular , Phytochrome/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biliverdine , Computational Biology , Phytochrome/chemistry , Protein Conformation , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL