Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37887028

ABSTRACT

The alternative oxidase (AOX) is a ubiquinol oxidase with a crucial role in the mitochondrial alternative respiratory pathway, which is associated with various processes in plants. In this study, the activity of AOX in pea seed germination was determined in two pea cultivars, 'Maravilha d'América' (MA) and 'Torta de Quebrar' (TQ), during a germination trial using cytochrome oxidase (COX) and AOX inhibitors [rotenone (RT) and salicylic hydroxamic acid (SHAM), respectively]. Calorespirometry was used to assess respiratory changes during germination. In both cultivars, SHAM had a greater inhibitory effect on germination than RT, demonstrating the involvement of AOX in germination. Although calorespirometry did not provide direct information on the involvement of the alternative pathway in seed germination, this methodology was valuable for distinguishing cultivars. To gain deeper insights into the role of AOX in seed germination, the AOX gene family was characterized, and the gene expression pattern was evaluated. Three PsAOX members were identified-PsAOX1, PsAOX2a and PsAOX2b-and their expression revealed a marked genotype effect. This study emphasizes the importance of AOX in seed germination, contributing to the understanding of the role of the alternative respiratory pathway in plants.

2.
Front Plant Sci ; 14: 1145137, 2023.
Article in English | MEDLINE | ID: mdl-37229125

ABSTRACT

The wine sector faces important challenges related to sustainability issues and the impact of climate change. More frequent extreme climate conditions (high temperatures coupled with severe drought periods) have become a matter of concern for the wine sector of typically dry and warm regions, such as the Mediterranean European countries. Soil is a natural resource crucial to sustaining the equilibrium of ecosystems, economic growth and people's prosperity worldwide. In viticulture, soils have a great influence on crop performance (growth, yield and berry composition) and wine quality, as the soil is a central component of the terroir. Soil temperature (ST) affects multiple physical, chemical and biological processes occurring in the soil as well as in plants growing on it. Moreover, the impact of ST is stronger in row crops such as grapevine, since it favors soil exposition to radiation and favors evapotranspiration. The role of ST on crop performance remains poorly described, especially under more extreme climatic conditions. Therefore, a better understanding of the impact of ST in vineyards (vine plants, weeds, microbiota) can help to better manage and predict vineyards' performance, plant-soil relations and soil microbiome under more extreme climate conditions. In addition, soil and plant thermal data can be integrated into Decision Support Systems (DSS) to support vineyard management. In this paper, the role of ST in Mediterranean vineyards is reviewed namely in terms of its effect on vines' ecophysiological and agronomical performance and its relation with soil properties and soil management strategies. The potential use of imaging approaches, e.g. thermography, is discussed as an alternative or complementary tool to assess ST and vertical canopy temperature profiles/gradients in vineyards. Soil management strategies to mitigate the negative impact of climate change, optimize ST variation and crop thermal microclimate (leaf and berry) are proposed and discussed, with emphasis on Mediterranean systems.

3.
Sci Rep ; 13(1): 3527, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864212

ABSTRACT

Phosphorus (P) is a plant macronutrient that is indispensable for maize (Zea mays L.) production. However, P is difficult to manage in weathered soils, and its fertilization practice has low efficiency because it becomes unavailable for absorption by plant roots. Symbiosis of plants with arbuscular mycorrhizal fungi increases plant growth and enhances P uptake from the soil that is not directly available to the roots. Thus, the objective of this study was to determine how inoculation with Rhizophagus intraradices and phosphate fertilization interacts and influences the development and productivity of second-crop maize. The experiment was conducted in Selvíria, Mato Grosso do Sul, Brazil, in 2019 and 2020, both in a Typic Haplorthox. A randomized block design in subdivided plots was used for the phosphate application during crop sowing (0, 25, 50, 75, and 100% concentrations of the recommended level), and the secondary treatments were the doses of mycorrhizal inoculant (0, 60, 120 and 180 g ha-1) applied to the seed using a dry powder inoculant containing 20,800 infectious propagules per gram of the arbuscular mycorrhizal fungus R. intraradices. Only in the first year of the experiment, inoculation and phosphate fertilization promoted benefits to the maize crop, indicating potential to increase yield.


Subject(s)
Mycorrhizae , Phosphates , Zea mays , Plant Roots , Soil , Fertilization
4.
Plants (Basel) ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903843

ABSTRACT

MicroRNAs (miRNAs) are non-coding small RNAs that play crucial roles in plant development and stress responses and can regulate plant interactions with beneficial soil microorganisms such as arbuscular mycorrhizal fungi (AMF). To determine if root inoculation with distinct AMF species affected miRNA expression in grapevines subjected to high temperatures, RNA-seq was conducted in leaves of grapevines inoculated with either Rhizoglomus irregulare or Funneliformis mosseae and exposed to a high-temperature treatment (HTT) of 40 °C for 4 h per day for one week. Our results showed that mycorrhizal inoculation resulted in a better plant physiological response to HTT. Amongst the 195 identified miRNAs, 83 were considered isomiRs, suggesting that isomiRs can be biologically functional in plants. The number of differentially expressed miRNAs between temperatures was higher in mycorrhizal (28) than in non-inoculated plants (17). Several miR396 family members, which target homeobox-leucine zipper proteins, were only upregulated by HTT in mycorrhizal plants. Predicted targets of HTT-induced miRNAs in mycorrhizal plants queried to STRING DB formed networks for Cox complex, and growth and stress-related transcription factors such as SQUAMOSA promoter-binding-like-proteins, homeobox-leucine zipper proteins and auxin receptors. A further cluster related to DNA polymerase was found in R. irregulare inoculated plants. The results presented herein provide new insights into miRNA regulation in mycorrhizal grapevines under heat stress and can be the basis for functional studies of plant-AMF-stress interactions.

5.
Front Plant Sci ; 13: 827117, 2022.
Article in English | MEDLINE | ID: mdl-35574105

ABSTRACT

The availability of phenotyping tools to assist breeding programs in the selection of high-quality crop seeds is of obvious interest with consequences for both seed producers and consumers. Seed germination involves the activation of several metabolic pathways, such as cellular respiration to provide the required ATP and reducing power. This work tested the applicability of calorespirometry, the simultaneous measurement of heat and CO2 rates, as a phenotyping tool to assess seed respiratory properties as a function of temperature. The effect of temperature on seed germination was evaluated after 16 h of seed imbibition by calorespirometric experiments performed in isothermal mode at 15, 20, 25, and 28°C on the seeds of three cultivars of peas (Pisum sativum L.) commonly used in conventional agriculture (cvs. 'Rondo', 'Torta de Quebrar', and 'Maravilha d'América'). Significant differences in metabolic heat rate and CO2 production rate (R CO2 ) as well as in the temperature responses of these parameters were found among the three cultivars. A seed germination trial was conducted during the 6 days of imbibition to evaluate the predictive power of the parameters derived from the calorespirometric measurements. The germination trial showed that the optimal germination temperature was 20°C and low germination rates were observed at extreme temperatures (15 or 28°C). The cv. 'Torta de Quebrar' showed significantly higher germination in comparison with the other two cultivars at all three temperatures. In comparison with the other two cultivars, 'Torta de Quebrar' has the lowest metabolic heat and CO2 rates and the smallest temperature dependence of these measured parameters. Additionally, 'Torta de Quebrar' has the lowest values of growth rate and carbon use efficiency calculated from the measured variables. These data suggest that calorespirometry is a useful tool for phenotyping physiologic efficiency at different temperatures during early germination stages, and can determine the seeds with the highest resilience to temperature variation, in this case 'Torta de Quebrar'.

6.
Pest Manag Sci ; 78(7): 2985-2994, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35419935

ABSTRACT

BACKGROUND: Chemical seed treatment is an established practice in agriculture to protect crops from soil-borne pathogens and pests. Arbuscular mycorrhizal fungi (AMF) benefit plants by extending soil exploration as well as water and nutrient uptake. The objective of this work was to analyze the effects of combinations of seed treatments with doses of inoculant containing Rhizoglomus intraradices on vegetative development, root colonization and nutrition of Phaseolus vulgaris plants and soil microbiota. RESULTS: Seed treatment benefited the vegetative development and nutrition of beans, with the treatments metalaxyl + fludioxonil + tiabendazole and pyraclostrobin + thiophanate methyl + fipronil standing out regarding the contents of nitrogen (N), phosphorus (P), iron (Fe) and zinc (Zn) of the aerial parts. Mycorrhizal inoculation linearly increased dehydrogenase activity, root biomass and total plant biomass, with increments reaching 27%. There was an interaction between seed treatment and inoculation dose for aboveground biomass and the contents of potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn) and root colonization, with expressive results for the combination of the two highest doses of inoculant with metalaxyl + fludioxonil + tiabendazole or pyraclostrobin + methylthiophanate + fipronil in the seeds. CONCLUSION: Chemical seed treatment and mycorrhizal inoculation benefited bean plants and their nutritional status. The best combinations for the bean crop were metalaxyl + fludioxonil + tiabendazole with 41.4 mg of the inoculant per 100 seeds and pyraclostrobin + thiophanate methyl + fipronil with 62.1 mg of the inoculant per 100 seeds. © 2022 Society of Chemical Industry.


Subject(s)
Mycorrhizae , Phaseolus , Nutritional Status , Plant Roots/microbiology , Seeds , Soil , Symbiosis , Thiophanate/pharmacology
7.
Plants (Basel) ; 10(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34834732

ABSTRACT

Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.

8.
Plants (Basel) ; 9(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167584

ABSTRACT

Heat stress negatively affects several physiological and biochemical processes in grapevine plants. In this work, two new methods, calorespirometry, which has been used to determine temperature adaptation in plants, and near-infrared (NIR) spectroscopy, which has been used to determine several grapevine-related traits and to discriminate among varieties, were tested to evaluate grapevine response to high temperatures. 'Touriga Nacional' variety grapevines, inoculated or not with Rhizoglomus irregulare or Funneliformis mosseae, were used in this study. Calorespirometric parameters and NIR spectra, as well as other parameters commonly used to assess heat injury in plants, were measured before and after high temperature exposure. Growth rate and substrate carbon conversion efficiency, calculated from calorespirometric measurements, and stomatal conductance, were the most sensitive parameters for discriminating among high temperature responses of control and inoculated grapevines. The results revealed that, although this vine variety can adapt its physiology to temperatures up to 40 °C, inoculation with R. irregulare could additionally help to sustain its growth, especially after heat shocks. Therefore, the combination of calorespirometry together with gas exchange measurements is a promising strategy for screening grapevine heat tolerance under controlled conditions and has high potential to be implemented in initial phases of plant breeding programs.

9.
Front Plant Sci ; 9: 1906, 2018.
Article in English | MEDLINE | ID: mdl-30740120

ABSTRACT

Plant inoculation with arbuscular mycorrhizal fungi (AMF) is increasingly employed to enhance productivity and sustainability in agricultural ecosystems. In the present study, the potential benefits of AMF inoculation on young grapevines replanted in pots containing vineyard soil with high Cu concentration were evaluated. For this purpose, one-year-old cv. Touriga Nacional grapevines grafted onto 1103P rootstocks were further inoculated with Rhizoglomus irregulare or Funneliformis mosseae, or left non-inoculated, and maintained in a sterilized substrate under greenhouse conditions for three months. After this time, half of the plants were transplanted to containers filled with an Arenosol from a vineyard which had been artificially contaminated or not with 300 mg kg-1 of Cu. At the end of the growing season, soil nutrient concentration, soil dehydrogenase activity and mycorrhizal colonization rate were analyzed. Grapevine performance was assessed by measuring several vegetative growth and physiological parameters as well as nutrient concentrations in leaves and roots. In the non-contaminated soil, R. irregulare- and F. mosseae-inoculated plants had significantly greater root biomass than the non-inoculated ones. However, the opposite effect was observed in the Cu-contaminated soil, where non-inoculated plants performed better regarding shoot and root development. Concerning nutrient levels, an increase in Cu, Mg and Mn concentrations was observed in the roots of plants growing in the contaminated soil, although only Mn was translocated to leaves. This led to a large increase in leaf Mn concentrations, which was significantly higher in non-inoculated and F. mosseae- inoculated plants than in the R. irregulare- inoculated ones. Copper contamination induced a general decrease in leaf N, P and Fe concentrations as well as chlorosis symptoms. The largest decrease in N and P was observed in F. mosseae- inoculated plants, with 73 and 31.2%, respectively. However, these plants were the ones with the least decrease in Fe concentration (10% vs. almost 30% in the other two inoculation treatments). In conclusion, this study indicates that soil Cu levels can modify the outcome of AMF inoculations in young grapevines, disclosing new AMF-plant associations potentially relevant in vineyards with a tradition of Cu-based fungicide application.

10.
Front Plant Sci ; 8: 417, 2017.
Article in English | MEDLINE | ID: mdl-28424712

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are crucial components of fertile soils, able to provide several ecosystem services for crop production. Current economic, social and legislative contexts should drive the so-called "second green revolution" by better exploiting these beneficial microorganisms. Many challenges still need to be overcome to better understand the mycorrhizal symbiosis, among which (i) the biotrophic nature of AMF, constraining their production, while (ii) phosphate acts as a limiting factor for the optimal mycorrhizal inoculum application and effectiveness. Organism fitness and adaptation to the changing environment can be driven by the modulation of mitochondrial respiratory chain, strongly connected to the phosphorus processing. Nevertheless, the role of the respiratory function in mycorrhiza remains largely unexplored. We hypothesized that the two mitochondrial respiratory chain components, alternative oxidase (AOX) and cytochrome oxidase (COX), are involved in specific mycorrhizal behavior. For this, a complex approach was developed. At the pre-symbiotic phase (axenic conditions), we studied phenotypic responses of Rhizoglomus irregulare spores with two AOX and COX inhibitors [respectively, salicylhydroxamic acid (SHAM) and potassium cyanide (KCN)] and two growth regulators (abscisic acid - ABA and gibberellic acid - Ga3). At the symbiotic phase, we analyzed phenotypic and transcriptomic (genes involved in respiration, transport, and fermentation) responses in Solanum tuberosum/Rhizoglomus irregulare biosystem (glasshouse conditions): we monitored the effects driven by ABA, and explored the modulations induced by SHAM and KCN under five phosphorus concentrations. KCN and SHAM inhibited in vitro spore germination while ABA and Ga3 induced differential spore germination and hyphal patterns. ABA promoted mycorrhizal colonization, strong arbuscule intensity and positive mycorrhizal growth dependency (MGD). In ABA treated plants, R. irregulare induced down-regulation of StAOX gene isoforms and up-regulation of genes involved in plant COX pathway. In all phosphorus (P) concentrations, blocking AOX or COX induced opposite mycorrhizal patterns in planta: KCN induced higher Arum-type arbuscule density, positive MGD but lower root colonization compared to SHAM, which favored Paris-type formation and negative MGD. Following our results and current state-of-the-art knowledge, we discuss metabolic functions linked to respiration that may occur within mycorrhizal behavior. We highlight potential connections between AOX pathways and fermentation, and we propose new research and mycorrhizal application perspectives.

11.
Front Plant Sci ; 7: 1043, 2016.
Article in English | MEDLINE | ID: mdl-27563303

ABSTRACT

Alternative oxidase (AOX) protein is located in the inner mitochondrial membrane and is encoded in the nuclear genome being involved in plant response upon a diversity of environmental stresses and also in normal plant growth and development. Here we report the characterization of the AOX gene family of Hypericum perforatum L. Two AOX genes were identified, both with a structure of four exons (HpAOX1, acc. KU674355 and HpAOX2, acc. KU674356). High variability was found at the N-terminal region of the protein coincident with the high variability identified at the mitochondrial transit peptide. In silico analysis of regulatory elements located at intronic regions identified putative sequences coding for miRNA precursors and trace elements of a transposon. Simple sequence repeats were also identified. Additionally, the mRNA levels for the HpAOX1 and HpAOX2, along with the ones for the HpGAPA (glyceraldehyde-3-phosphate dehydrogenase A subunit) and the HpCAT1 (catalase 1), were evaluated during the post-germinative development. Gene expression analysis was performed by RT-qPCR with accurate data normalization, pointing out HpHYP1 (chamba phenolic oxidative coupling protein 1) and HpH2A (histone 2A) as the most suitable reference genes (RGs) according to GeNorm algorithm. The HpAOX2 transcript demonstrated larger stability during the process with a slight down-regulation in its expression. Contrarily, HpAOX1 and HpGAPA (the corresponding protein is homolog to the chloroplast isoform involved in the photosynthetic carbon assimilation in other plant species) transcripts showed a marked increase, with a similar expression pattern between them, during the post-germinative development. On the other hand, the HpCAT1 (the corresponding protein is homolog to the major H2O2-scavenging enzyme in other plant species) transcripts showed an opposite behavior with a down-regulation during the process. In summary, our findings, although preliminary, highlight the importance to investigate in more detail the participation of AOX genes during the post-germinative development in H. perforatum, in order to explore their functional role in optimizing photosynthesis and in the control of reactive oxygen species (ROS) levels during the process.

12.
Front Genet ; 7: 1, 2016.
Article in English | MEDLINE | ID: mdl-26858746

ABSTRACT

Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth. Calorespirometry, a tool previously identified as promising for predictive growth phenotyping has been applied to measure the respiration rate in carrot meristem. In a carrot primary culture system (PCS), this tool allowed identifying an early peak related with structural biomass formation during lag phase of growth, around the 4th day of culture. In the present study, we report a dynamic and correlated expression of carrot AOX genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a subsequent down-regulation, before the initiation of exponential growth. In PCS growing at two different temperatures (21°C and 28°C), DcAOX1 was also found to be more expressed in the highest temperature. DcAOX genes' were further explored in a plant pot experiment in response to chilling, which confirmed the early AOX transcript increase prior to the induction of a specific anti-freezing gene. Our findings point to DcAOX1 and DcAOX2a as being reasonable candidates for functional marker development related to early cell reprogramming. While the genomic sequence of DcAOX2a was previously described, we characterize here the complete genomic sequence of DcAOX1.

13.
Brief Funct Genomics ; 15(1): 10-5, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25818699

ABSTRACT

We propose a novel concept and tool kit for predictive phenotyping. The proposed technology measures respiration properties as functions of growth conditions to identify genotypes with higher plasticity via homeostasis and adaptive morphophysiology. Combining calorespirometry, oxygen isotope analysis and functional-marker-assisted selection ('CalOxy-FMAS') for genotype screening will enable predicting the genetic potential for stable plant growth performance. Application of this novel tool kit can help identify genotypes with controlled homeostasis in changing environments and optimized growth performance. Simultaneously, it will allow a better balance in breeding for high yields and quality characteristics. Applying 'CalOxy-FMAS' can efficiently narrow the pool of genotypes to be screened for final phenotyping in the field.


Subject(s)
Biomarkers/analysis , Calorimetry, Indirect/methods , Oxygen Isotopes/analysis , Plant Development/genetics , Plant Physiological Phenomena/genetics , Breeding , Genotype , Phenotype
14.
Brief Funct Genomics ; 15(4): 288-97, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26293603

ABSTRACT

Molecular plant breeding usually overlooks the genetic variability that arises from the association of plants with endophytic microorganisms, when looking at agronomic interesting target traits. This source of variability can have crucial effects on the functionality of the organism considered as a whole (the holobiont), and therefore can be selectable in breeding programs. However, seeing the holobiont as a unit for selection and improvement in breeding programs requires novel approaches for genotyping and phenotyping. These should not focus just at the plant level, but also include the associated endophytes and their functional effects on the plant, to make effective desirable trait screenings. The present review intends to draw attention to a new research field on functional hologenomics that if associated with adequate phenotyping tools could greatly increase the efficiency of breeding programs.


Subject(s)
Genomics/methods , Plant Breeding , Plants/genetics , Quantitative Trait Loci , Phenotype
15.
PLoS One ; 10(11): e0142339, 2015.
Article in English | MEDLINE | ID: mdl-26540237

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are root-inhabiting fungi that form mutualistic symbioses with their host plants. AMF symbiosis improves nutrient uptake and buffers the plant against a diversity of stresses. Rhizophagus irregularis is one of the most widespread AMF species in the world, and its application in agricultural systems for yield improvement has increased over the last years. Still, from the inoculum production perspective, a lack of consistency of inoculum quality is referred to, which partially may be due to a high genetic variability of the fungus. The alternative oxidase (AOX) is an enzyme of the alternative respiratory chain already described in different taxa, including various fungi, which decreases the damage caused by oxidative stress. Nevertheless, virtually nothing is known on the involvement of AMF AOX on symbiosis establishment, as well on the existence of AOX variability that could affect AMF effectiveness and consequently plant performance. Here, we report the isolation and characterisation of the AOX gene of R. irregularis (RiAOX), and show that it is highly expressed during early phases of the symbiosis with plant roots. Phylogenetic analysis clustered RiAOX sequence with ancient fungi, and multiple sequence alignment revealed the lack of several regulatory motifs which are present in plant AOX. The analysis of RiAOX polymorphisms in single spores of three different isolates showed a reduced variability in one spore relatively to a group of spores. A high number of polymorphisms occurred in introns; nevertheless, some putative amino acid changes resulting from non-synonymous variants were found, offering a basis for selective pressure to occur within the populations. Given the AOX relatedness with stress responses, differences in gene variants amongst R. irregularis isolates are likely to be related with its origin and environmental constraints and might have a potential impact on inoculum production.


Subject(s)
Mitochondrial Proteins/genetics , Mycorrhizae/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Plants/genetics , Plants/microbiology , Spores, Fungal/genetics , Phylogeny , Plant Roots/genetics , Plant Roots/microbiology , Symbiosis/genetics
16.
Planta ; 241(2): 525-38, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25380771

ABSTRACT

MAIN CONCLUSION: Calorespirometric measurements proved to be useful for phenotyping temperature response in terms of optimum temperatures for growth and low temperature limits for growth respiration in diverse carrot genotypes. High and low-temperature tolerance is an important trait in many breeding programs, but to date, improvement strategies have had limited success. Developing new, cost efficient and reliable screening tools to identify and select the most tolerant crop plant genotypes is necessary to assist plant breeding on cold and heat tolerance, and calorespirometry is proposed for this. Calorespirometry is a technique to simultaneously measure metabolic heat rates and CO2 emission rates of respiring tissues and can be used as a rapid method to determine how changes in the environment (e.g., temperature) influence plant growth. The main aim of this work was, therefore, to test the usefulness of calorespirometry as a phenotyping tool for carrot taproot growth in response to temperature. Calorespirometric measurements in the carrot taproot meristems of plants from eight carrot inbred lines allowed identification of optimum and minimum temperatures for growth of plants and to distinguish between phenotypes based on those characteristics. The technique proved to be useful for predicting yield-determining temperature responses in diverse carrot genotypes. Preliminary screening of new crop plant genotypes with calorespirometry based on their temperature adaptation and acclimation capability could make the screening process much less laborious by allowing selection of genotypes presenting the best growth performance under particular biotic or abiotic conditions before field tests.


Subject(s)
Daucus carota/metabolism , Daucus carota/physiology , Temperature
17.
Mycorrhiza ; 18(4): 211-216, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18338184

ABSTRACT

Two indigenous arbuscular mycorrhizal (AM) fungi from the Mediterranean wine growing area in the Northeast of Spain were isolated and classified as Glomus intraradices Schenck & Smith. Both native fungi were found to increase the growth of the vine rootstock 110 Richter under greenhouse conditions compared with G. intraradices (BEG 72) and a phosphorus (P) fertilization treatment. The effectivity of field inoculation of Cabernet Sauvignon plants grafted on Richter 110 with the former native fungi and with G. intraradices BEG 72 in a replant vineyard severely infested by the root-rot fungus Armillaria mellea (Vahl ex Fr.) Kummer was assessed. The native fungi were not effective at enhancing plant development, and only G. intraradices BEG 72, resulted in a positive response. Field inoculation with this selected fungus increased plant shoot dry weight at the end of the first growing season.


Subject(s)
Fungi/physiology , Mycorrhizae , Plant Roots , Vitis , Agaricales , DNA, Fungal/analysis , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Molecular Sequence Data , Mycorrhizae/physiology , Phosphorus/metabolism , Plant Diseases/microbiology , Plant Roots/growth & development , Plant Roots/microbiology , Plant Shoots/growth & development , Plant Shoots/microbiology , Polymerase Chain Reaction , Sequence Analysis, DNA , Soil/analysis , Soil Microbiology , Spain , Spores, Fungal/classification , Spores, Fungal/isolation & purification , Vitis/growth & development , Vitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...