Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Orthod Dentofacial Orthop ; 162(5): e267-e276, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36123227

ABSTRACT

INTRODUCTION: We evaluated the effects of secondary bone grafting (SBG) on oral health-related and generic health-related quality of life (OHRQOL and HRQOL, respectively) in preadolescent orthodontic patients with alveolar bone defects. METHODS: We divided 101 orthodontic patients aged 8-10 years into 3 groups: 39 general orthodontic patients, 18 patients with orofacial clefts who did not require SBG, and 44 patients with alveolar defects who required SBG using particulate cancellous bone and marrow obtained from the iliac crest. The participants completed the self-report Child Perceptions Questionnaire (CPQ) and Paediatric Quality of Life Inventory (version 4.0) for OHRQOL and HRQOL, respectively, and their scores were assessed. The quality of life (QOL) of patients who required SBG was examined before, 1 month, and 6 months after SBG. The relationships between OHRQOL or HRQOL and potential patient factors were also evaluated. RESULTS: Physical HRQOL subscale scores worsened 1 month after SBG, whereas the total OHRQOL and HRQOL scores before and after SBG showed no significant changes. OHRQOL and HRQOL showed no significant differences among the 3 groups before SBG. The presence of oronasal fistula was associated with poorer OHRQOL in patients with cleft lip and/or palate. CONCLUSIONS: SBG and orthodontic treatment had a relatively small impact on the QOL of the preadolescent children in this study. Understanding the influence of SBG and patient factors on QOL would enable better treatment and care for these patients.

2.
Diabetes ; 64(11): 3751-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26116698

ABSTRACT

Leptin is known to selectively suppress neural and behavioral responses to sweet-tasting compounds. However, the molecular basis for the effect of leptin on sweet taste is not known. Here, we report that leptin suppresses sweet taste via leptin receptors (Ob-Rb) and KATP channels expressed selectively in sweet-sensitive taste cells. Ob-Rb was more often expressed in taste cells that expressed T1R3 (a sweet receptor component) than in those that expressed glutamate-aspartate transporter (a marker for Type I taste cells) or GAD67 (a marker for Type III taste cells). Systemically administered leptin suppressed taste cell responses to sweet but not to bitter or sour compounds. This effect was blocked by a leptin antagonist and was absent in leptin receptor-deficient db/db mice and mice with diet-induced obesity. Blocking the KATP channel subunit sulfonylurea receptor 1, which was frequently coexpressed with Ob-Rb in T1R3-expressing taste cells, eliminated the effect of leptin on sweet taste. In contrast, activating the KATP channel with diazoxide mimicked the sweet-suppressing effect of leptin. These results indicate that leptin acts via Ob-Rb and KATP channels that are present in T1R3-expressing taste cells to selectively suppress their responses to sweet compounds.


Subject(s)
Leptin/pharmacology , Taste Buds/drug effects , Taste/drug effects , Action Potentials/drug effects , Action Potentials/physiology , Animals , KATP Channels/metabolism , Mice , Receptors, Leptin/metabolism , Taste Buds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...