Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(11): 108323, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026163

ABSTRACT

Among various single-cell analysis platforms, hydrodynamic cell trapping systems remain relevant because of their versatility. Among those, deterministic hydrodynamic cell-trapping systems have received significant interest; however, their applications are limited because trapped cells are kept within the closed microchannel, thus prohibiting access to external cell-picking devices. In this study, we develop a hydrodynamic cell-trapping system in an open microfluidics architecture to allow external access to trapped cells. A technique to render only the inside of a polydimethylsiloxane (PDMS) microchannel hydrophilic is developed, which allows the precise confinement of spontaneous capillary flow in the open-type microchannel with a width on the order of several tens of micrometers. Efficient trapping of single beads and single cells is achieved, in which trapped cells can be retrieved via automated robotic pipetting. The present system can facilitate the development of new single-cell analytical systems by bridging between microfluidic devices and macro-scale apparatus used in conventional biology.

2.
Anal Chem ; 84(11): 4739-45, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22540342

ABSTRACT

A gradient elution system for pressure-driven liquid chromatography (LC) on a chip was developed for carrying out faster and more efficient chemical analyses. Through computational fluid dynamics simulations and an experimental study, we found that the use of a cross-Tesla structure with a 3 mm mixing length was effective for mixing two liquids. A gradient elution system using a cross-Tesla mixer was fabricated on a 20 mm × 20 mm silicon chip with a separation channel of pillar array columns and a sample injection channel. A mixed solution of water and fluorescein in methanol was delivered to the separation channel 7 s after the gradient program had been started. Then, the fluorescence intensity increased gradually with the increasing ratio of fluorescein, which showed that the gradient elution worked well. Under the gradient elution condition, the retention times of two coumarin dyes decreased with the gradient time. When the gradient time was 30 s, the analysis could be completed in 30 s, which was only half the time required compared to that required for an isocratic elution. Fluorescent derivatives of aliphatic amines were successfully separated within 110 s. The results show that the proposed system is promising for the analyses of complex biological samples.


Subject(s)
Capillary Electrochromatography/methods , Chromatography, High Pressure Liquid/methods , Coumarins/analysis , Fluorescein/analysis , Capillary Electrochromatography/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Flow Injection Analysis , Fluorescence , Methanol , Time Factors , Water
3.
Biomicrofluidics ; 5(1): 14114, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21523252

ABSTRACT

A sequential and high-throughput single-cell manipulation system for a large volume of cells was developed and the successive manipulation for single cell involving single-cell isolation, individual labeling, and individual rupture was realized in a microhydrodynamic flow channel fabricated by using two-dimensional simple flow channels. This microfluidic system consisted of the successive single-cell handlings of single-cell isolation from a large number of cells in cell suspension, labeling each isolated single cell and the lysate extraction from each labeled single cell. This microfluidic system was composed of main channels, cell-trapping pockets, drain channels, and single-cell content collection channels which were fabricated by polydimethylsiloxane. We demonstrated two kinds of prototypes for sequential single-cell manipulations, one was equipped with 16 single-cell isolation pockets in microchannel and the other was constructed of 512 single-cell isolation pockets. In this study, we demonstrated high-throughput and high-volume single-cell isolation with 512 pocket type device. The total number of isolated single cells in each isolation pocket from the cell suspension at a time was 426 for the cell line of African green monkey kidney, COS-1, and 360 for the rat primary brown preadipocytes, BAT. All isolated cells were stained with fluorescence dye injected into the same microchannel successfully. In addition, the extraction and collection of the cell contents was demonstrated using isolated stained COS-1 cells. The cell contents extracted from each captured cell were individually collected within each collection channel by local hydrodynamic flow. The sequential trapping, labeling, and content extraction with 512 pocket type devices realized high-throughput single-cell manipulations for innovative single-cell handling, feasible staining, and accurate cell rupture.

4.
Anal Chem ; 82(4): 1420-6, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20092311

ABSTRACT

In this study, we show for the first time that the separation efficiency of a pillar array column under pressure-driven liquid chromatography (LC) conditions can be improved using a separation channel with low-dispersion turns. The pillar array column was fabricated by reactive ion etching of a silicon substrate. With the low-dispersion-turn geometry, a column with a length and width of 110 mm and 400 microm, respectively, could be fabricated on a 20 x 20 mm microchip. Under nonretained conditions, the solute bands obtained for fluorescent compounds remained almost unchanged even after passing through the low-dispersion turns; however, significant skewing of the solute bands was observed in the case of constant-radius turns. Two coumarin dyes were well resolved under reversed-phase conditions, and a maximum theoretical plate number of 8000 was obtained. Successful separation of the fluorescent derivatives of six amino acids was achieved in 140 s. These results indicated that the separation efficiency of microchip chromatography could be significantly improved using a long separation channel with low-dispersion turns.


Subject(s)
Chromatography, Liquid/instrumentation , Microarray Analysis , Pressure , Coumarins/isolation & purification , Fluorescent Dyes/isolation & purification , Injections
SELECTION OF CITATIONS
SEARCH DETAIL
...