Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203929

ABSTRACT

Water pollution poses a global threat to ecosystems and human health and is driven by the presence of various contaminants in wastewater, including nano- and microplastics. Despite the magnitude of this problem, the majority of global wastewater is released untreated into water bodies. To combat this issue, a multi-strategy approach is needed. This study explores a circular economy-based solution for treating emerging pollutants, particularly wastewater from ophthalmic spectacle lens production. Our approach integrates solid waste materials into polymeric and cement matrices while also utilising wastewater for microalgae cultivation. This innovative strategy focuses on biomass generation and economic valorisation. By adopting a circular economy model, we aim to transform environmental pollutants from wastewater into valuable organic products. A key component of our approach is the utilisation of microalgae, specifically Nannochloropsis sp., known for its high lipid content and resilience. This microalgae species serves as a promising biobased feedstock, supporting the production of innovative biobased products, such as biopolymers, for ophthalmic lens manufacturing. Our interdisciplinary approach combines microalgae technology, analytical chemistry, cement production, and polymer processing to develop a sustainable circular economy model that not only addresses environmental concerns, but also offers economic benefits. This study underscores the potential of harnessing high-value products from waste streams and underscores the importance of circular economy principles in tackling pollution and resource challenges.

2.
Int J Pharm ; 579: 119156, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32070760

ABSTRACT

One of the applications of Hot-Melt Extrusion (HME) is the stabilization of amorphous drugs through its incorporation into polymeric blends in the form of Amorphous Solid Dispersions (ASDs). In this study, HME was applied to solve a real problem in the development of an ibrutinib product, stabilizing the amorphous form. A systematic approach was followed by combining theoretical calculations, high-throughput screening (HTS) focused on physical stability and Principal Components Analysis (PCA). The HTS enabled the evaluation of 33 formulations for physical stability and the PCA was key to select four promising systems. The low relevance of drug loading on the drug crystallization supported the HME tests with a very high drug load of 50%. Milled extrudates were characterized and demonstrated to be fully amorphous. The thermal analysis detected a glass transition temperature much higher than the predicted values. Along with several weak intermolecular interactions detected in Raman spectroscopy, a dipolar interaction involving the α, ß unsaturated ketone function of ibrutinib was also noticed. The additive effect of these intermolecular interactions changed markedly the performance of the ASDs. The physical strength of the prepared systems was corroborated by stability studies until 6 months at long-term and accelerated conditions.


Subject(s)
Adenine/analogs & derivatives , Drug Compounding/methods , Drug Stability , Piperidines/chemistry , Adenine/chemistry , Crystallization , Hot Temperature , Polymers/chemistry , Spectrum Analysis, Raman/methods , Transition Temperature
3.
Commun Chem ; 3(1): 34, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-36703361

ABSTRACT

Color polymorphism is an interesting property of chemical systems which present crystal polymorphs of different colors. It is a rare phenomenon, with only a few examples reported in the literature hitherto. Nevertheless, systems exhibiting color polymorphism have many potential applications in different domains, such as pigment, sensor, and technology industries. Here, known representative chemical systems showing color polymorphism are reviewed, and the reasons for them to present such property discussed. Also, since some of the concepts related to color polymorphism have been frequently used imprecisely in the scientific literature, this article provides concise, systematic definitions for these concepts.

4.
Dalton Trans ; 46(29): 9358-9368, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28548670

ABSTRACT

Multinuclear (1H and 13C) NMR, and Raman spectroscopy, combined with DFT calculations, provide detailed information on the complexation between U(vi) oxoions and 8-hydroxyquinoline-5-sulfonate (8-HQS) in aqueous solution. Over the concentration region studied, U(vi) oxoions (uranyl ions) form one dominant complex with 8-HQS in water in the pH range 3-6, a mononuclear 1 : 2 (metal : ligand) complex, with the metal centre (UO22+) coordinated to two 8-HQS ligands, together with one or more water molecules. An additional minor 1 : 1 complex has also been detected for solutions with a 1 : 1 metal : ligand molar ratio. The geometry of the dominant complex is proposed based on the combination of the NMR and Raman results with DFT calculations. Further information on the electronic structure of the complex has been obtained from UV/visible absorption and luminescence spectra. The complex of U(vi) and 8-HQS is non-luminescent, in contrast to what has been observed with this ligand and many other metal ions. We suggest that this is due to the presence of low-lying ligand-to-metal charge transfer (LMCT) states below the emitting ligand-based and uranyl-based levels which quench their emission. These studies have fundamental importance and are also relevant in the context of environmental studies, and the water soluble ligand 8-HQS has been chosen for application in uranium remediation of aqueous environments.

5.
J Phys Chem A ; 118(31): 5994-6008, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25029485

ABSTRACT

The structural, vibrational, and photochemical study of 1-methylhydantoin (1-MH, C4H6N2O2) was undertaken by matrix isolation infrared spectroscopy (in argon matrix; 10 K), complemented by quantum chemical calculations performed at the DFT(B3LYP)/6-311++G(d,p) level of approximation. The theoretical calculations yielded the Cs symmetry structure, with planar heavy atom skeleton, as the minimum energy structure on the potential energy surface of the molecule. The electronic structure of this minimum energy structure of 1-MH was then studied in detail by means of the natural bond orbital (NBO) and atoms in molecules (AIM) approaches, allowing for the elucidation of specific characteristics of the molecule's σ and π electronic systems. The infrared spectrum of the matrix-isolated 1-MH was fully assigned, also with the help of the theoretically predicted spectrum of the compound, and its UV-induced unimolecular photochemistry (λ ≥ 230 nm) was investigated. The compound was found to fragment to CO, isocyanic acid, methylenimine, and N-methyl-methylenimine. Finally, a thermal behavior investigation on 1-MH samples was carried out using infrared spectroscopy (10 K until melting), differential scanning calorimetry and polarized light thermal microscopy. A new polymorph of 1-MH was identified. The IR spectra of the different observed phases were recorded and interpreted.


Subject(s)
Hydantoins/chemistry , Argon/chemistry , Calorimetry, Differential Scanning , Models, Chemical , Molecular Structure , Photolysis , Spectrophotometry, Infrared , Temperature , Ultraviolet Rays , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...