Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36678417

ABSTRACT

Schistosomiasis is one of the most important human helminthiases worldwide. Praziquantel is the current treatment, and no vaccine is available until the present. Thus, the presented study aimed to evaluate the immunization effects with recombinant Schistosoma mansoni enzymes: Adenosine Kinase (AK) and Hypoxanthine-Guanine Phosphoribosyltransferase (HGPRT), as well as a MIX of the two enzymes. Female Balb/c mice were immunized in three doses, and 15 days after the last immunization, animals were infected with S. mansoni. Our results showed that the group MIX presented a reduction in the eggs in feces by 30.74% and 29%, respectively, in the adult worms. The groups AK, HGPRT and MIX could produce IgG1 antibodies, and the groups AK and MIX produced IgE antibodies anti-enzymes and anti-S. mansoni total proteins. The groups AK, HGPRT and MIX induced a reduction in the eosinophils in the peritoneal cavity. Besides, the group AK showed a decrease in the number of hepatic granulomas (41.81%) and the eggs present in the liver (42.30%). Therefore, it suggests that immunization with these enzymes can contribute to schistosomiasis control, as well as help to modulate experimental infection inducing a reduction of physiopathology in the disease.

3.
Bioorg Med Chem Lett ; 25(17): 3564-8, 2015 09 01.
Article in English | MEDLINE | ID: mdl-26169126

ABSTRACT

The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Glycerolphosphate Dehydrogenase/antagonists & inhibitors , Leishmania/enzymology , Animals , Glycerolphosphate Dehydrogenase/metabolism , Leishmania/drug effects , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Macrophages/drug effects , Mice , Molecular Docking Simulation
4.
Molecules ; 18(1): 1053-62, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23322069

ABSTRACT

The present study describes the leishmanicidal and trypanocidal activities of two quinonemethide triterpenes, maytenin (1) and pristimerin (2), isolated from Maytenus ilicifolia root barks (Celastraceae). The compounds were effective against the Trypanosomatidae Leishmania amazonensis and Leishmania chagasi and Trypanosoma cruzi, etiologic agents of leishmaniasis and Chagas' disease, respectively. The quinonemethide triterpenes 1 and 2 exhibited a marked in vitro leishmanicidal activity against promastigotes and amastigotes with 50% inhibitory concentration (IC(50)) values of less than 0.88 nM. Both compounds showed IC(50) lower than 0.3 nM against Trypanosoma cruzi epimastigotes. The selectivity indexes (SI) based on BALB/c macrophages for L. amazonensis and L. chagasi were 243.65 and 46.61 for (1) and 193.63 and 23.85 for (2) indicating that both compounds presented high selectivity for Leishmania sp. The data here presented suggests that these compounds should be considered in the development of new and more potent drugs for the treatment of leishmaniasis and Chagas' disease.


Subject(s)
Maytenus/chemistry , Plant Extracts/pharmacology , Quinones/pharmacology , Triterpenes/pharmacology , Trypanocidal Agents/pharmacology , Animals , Cells, Cultured , Inhibitory Concentration 50 , Leishmania/drug effects , Lethal Dose 50 , Macrophages/drug effects , Macrophages/parasitology , Macrophages/physiology , Mice , Mice, Inbred BALB C , Plant Extracts/toxicity , Plant Roots/chemistry , Quinones/toxicity , Triterpenes/toxicity , Trypanocidal Agents/toxicity , Trypanosoma cruzi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...