Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746333

ABSTRACT

While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders. Six proteins initially identified in the ICI cohort correlated with predicted response in the untreated cohort. Additionally, three proteins correlated with patient survival, both at the protein, and at the transcript levels, in an independent immunotherapy treated cohort. Our study identifies predictive biomarkers across three melanoma cohorts, suggesting their use in therapeutic decision-making.

2.
Proc Natl Acad Sci U S A ; 121(19): e2316371121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38701118

ABSTRACT

Strigolactones are a class of phytohormones with various functions in plant development, stress responses, and in the interaction with (micro)organisms in the rhizosphere. While their effects on vegetative development are well studied, little is known about their role in reproduction. We investigated the effects of genetic and chemical modification of strigolactone levels on the timing and intensity of flowering in tomato (Solanum lycopersicum L.) and the molecular mechanisms underlying such effects. Results showed that strigolactone levels in the shoot, whether endogenous or exogenous, correlate inversely with the time of anthesis and directly with the number of flowers and the transcript levels of the florigen-encoding gene SINGLE FLOWER TRUSS (SFT) in the leaves. Transcript quantifications coupled with metabolite analyses demonstrated that strigolactones promote flowering in tomato by inducing the activation of the microRNA319-LANCEOLATE module in leaves. This, in turn, decreases gibberellin content and increases the transcription of SFT. Several other floral markers and morpho-anatomical features of developmental progression are induced in the apical meristems upon treatment with strigolactones, affecting floral transition and, more markedly, flower development. Thus, strigolactones promote meristem maturation and flower development via the induction of SFT both before and after floral transition, and their effects are blocked in plants expressing a miR319-resistant version of LANCEOLATE. Our study positions strigolactones in the context of the flowering regulation network in a model crop species.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Lactones , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/drug effects , Lactones/metabolism , Lactones/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Flowers/drug effects , Flowers/growth & development , Flowers/metabolism , Flowers/genetics , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Gibberellins/metabolism , Gibberellins/pharmacology
3.
Physiol Plant ; 176(2): e14274, 2024.
Article in English | MEDLINE | ID: mdl-38566272

ABSTRACT

AIMS: Phorbol esters (PE) are toxic diterpenoids accumulated in physic nut (Jatropha curcas L.) seed tissues. Their biosynthetic pathway remains unknown, and the participation of roots in this process may be possible. Thus, we set out to study the deposition pattern of PE and other terpenoids in roots and leaves of genotypes with detected (DPE) and not detected (NPE) phorbol esters based on previous studies. OUTLINE OF DATA RESOURCES: We analyzed physic nut leaf and root organic extracts using LC-HRMS. By an untargeted metabolomics approach, it was possible to annotate 496 and 146 metabolites in the positive and negative electrospray ionization modes, respectively. KEY RESULTS: PE were detected only in samples of the DPE genotype. Remarkably, PE were found in both leaves and roots, making this study the first report of PE in J. curcas roots. Furthermore, untargeted metabolomic analysis revealed that diterpenoids and apocarotenoids are preferentially accumulated in the DPE genotype in comparison with NPE, which may be linked to the divergence between the genotypes concerning PE biosynthesis, since sesquiterpenoids showed greater abundance in the NPE. UTILITY OF THE RESOURCE: The LC-HRMS files, publicly available in the MassIVE database (identifier MSV000092920), are valuable as they expand our understanding of PE biosynthesis, which can assist in the development of molecular strategies to reduce PE levels in toxic genotypes, making possible the food use of the seedcake, as well as its potential to contain high-quality spectral information about several other metabolites that may possess biological activity.


Subject(s)
Jatropha , Jatropha/genetics , Jatropha/metabolism , Phorbol Esters/analysis , Phorbol Esters/metabolism , Plant Leaves/metabolism , Seeds/genetics
4.
Plant Cell ; 36(6): 2086-2102, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38513610

ABSTRACT

How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.


Subject(s)
Gene Expression Regulation, Plant , Photoperiod , Seasons , Transcription Factors , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Plant Physiological Phenomena , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Rhythm/physiology , Circadian Rhythm/genetics
5.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38545623

ABSTRACT

The utilization of PD1 and CTLA4 inhibitors has revolutionized the treatment of malignant melanoma (MM). However, resistance to targeted and immune-checkpoint-based therapies still poses a significant problem. Here we mine large scale MM proteogenomic data integrating it with MM cell line dependency screen, and drug sensitivity data to identify druggable targets and forecast treatment efficacy and resistance. Leveraging protein profiles from established MM subtypes and molecular structures of 82 cancer treatment drugs, we identified nine candidate hub proteins, mTOR, FYN, PIK3CB, EGFR, MAPK3, MAP4K1, MAP2K1, SRC and AKT1, across five distinct MM subtypes. These proteins serve as potential drug targets applicable to one or multiple MM subtypes. By analyzing transcriptomic data from 48 publicly accessible melanoma cell lines sourced from Achilles and CRISPR dependency screens, we forecasted 162 potentially targetable genes. We also identified genetic resistance in 260 genes across at least one melanoma subtype. In addition, we employed publicly available compound sensitivity data (Cancer Therapeutics Response Portal, CTRPv2) on the cell lines to assess the correlation of compound effectiveness within each subtype. We have identified 20 compounds exhibiting potential drug impact in at least one melanoma subtype. Remarkably, employing this unbiased approach, we have uncovered compounds targeting ferroptosis, that demonstrate a striking 30x fold difference in sensitivity among different subtypes. This implies that the proteogenomic classification of melanoma has the potential to predict sensitivity to ferroptosis compounds. Our results suggest innovative and novel therapeutic strategies by stratifying melanoma samples through proteomic profiling, offering a spectrum of novel therapeutic interventions and prospects for combination therapy. Highlights: (1) Proteogenomic subtype classification can define the landscape of genetic dependencies in melanoma (2) Nine proteins from molecular subtypes were identified as potential drug targets for specified MM patients (3) 20 compounds identified that show potential effectiveness in at least one melanoma subtype (4) Proteogenomics can predict specific ferroptosis inducers, HDAC, and RTK Inhibitor sensitivity in melanoma subtypes.

6.
PLoS One ; 19(3): e0300918, 2024.
Article in English | MEDLINE | ID: mdl-38512827

ABSTRACT

Sarcopenia, a clinical syndrome primarily associated with reduced muscle mass in the elderly, has a negative impact on quality of life and survival. It can occur secondarily to other diseases such as heart failure (HF), a complex clinical syndrome with high morbidity and mortality. The simultaneous occurrence of these two conditions can worsen the prognosis of their carriers, especially in the most severe cases of HF, as in patients with reduced left ventricular ejection fraction (LVEF). However, due to the heterogeneous diagnostic criteria for sarcopenia, estimates of its prevalence present a wide variation, leading to new criteria having been recently proposed for its diagnosis, emphasizing muscle strength and function rather than skeletal muscle mass. The primary objective of this study is to evaluate the prevalence of sarcopenia and/or dynapenia in individuals with HF with reduced LVEF according to the most recent criteria, and compare the gene and protein expression of those patients with and without sarcopenia. The secondary objectives are to evaluate the association of sarcopenia and/or dynapenia with the risk of clinical events and death, quality of life, cardiorespiratory capacity, ventilatory efficiency, and respiratory muscle strength. The participants will answer questionnaires to evaluate sarcopenia and quality of life, and will undergo the following tests: handgrip strength, gait speed, dual-energy X-ray absorptiometry, respiratory muscle strength, cardiopulmonary exercise, as well as genomic and proteomic analysis, and dosage of N-terminal pro-B-type natriuretic peptide and growth differentiation factor-15. An association between sarcopenia and/or dynapenia with unfavorable clinical evolution is expected to be found, in addition to reduced quality of life, cardiorespiratory capacity, ventilatory efficiency, and respiratory muscle strength.


Subject(s)
Heart Failure , Sarcopenia , Humans , Aged , Sarcopenia/complications , Sarcopenia/epidemiology , Sarcopenia/diagnosis , Stroke Volume , Hand Strength/physiology , Prevalence , Quality of Life , Proteomics , Ventricular Function, Left , Muscle Strength/physiology , Heart Failure/complications , Heart Failure/epidemiology , Muscle, Skeletal , Observational Studies as Topic
8.
J Proteome Res ; 23(4): 1200-1220, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38390744

ABSTRACT

The Zika virus (ZIKV) can be vertically transmitted, causing congenital Zika syndrome (CZS) in fetuses. ZIKV infection in early gestational trimesters increases the chances of developing CZS. This syndrome involves several pathologies with a complex diagnosis. In this work, we aim to identify biological processes and molecular pathways related to CZS and propose a series of putative protein and metabolite biomarkers for CZS prognosis in early pregnancy trimesters. We analyzed serum samples of healthy pregnant women and ZIKV-infected pregnant women bearing nonmicrocephalic and microcephalic fetuses. A total of 1090 proteins and 512 metabolites were identified by bottom-up proteomics and untargeted metabolomics, respectively. Univariate and multivariate statistical approaches were applied to find CZS differentially abundant proteins (DAP) and metabolites (DAM). Enrichment analysis (i.e., biological processes and molecular pathways) of the DAP and the DAM allowed us to identify the ECM organization and proteoglycans, amino acid metabolism, and arachidonic acid metabolism as CZS signatures. Five proteins and four metabolites were selected as CZS biomarker candidates. Serum multiomics analysis led us to propose nine putative biomarkers for CZS prognosis with high sensitivity and specificity.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Pregnancy , Female , Humans , Zika Virus Infection/diagnosis , Zika Virus/genetics , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/pathology , Multiomics , Biomarkers
9.
Adv Exp Med Biol ; 1443: 63-85, 2024.
Article in English | MEDLINE | ID: mdl-38409416

ABSTRACT

Zika virus (ZIKV) infection can be transmitted vertically, leading to the development of congenital Zika syndrome (CZS) in infected fetuses. During the early stages of gestation, the fetuses face an elevated risk of developing CZS. However, it is important to note that late-stage infections can also result in adverse outcomes. The differences between CZS and non-CZS phenotypes remain poorly understood. In this review, we provide a summary of the molecular mechanisms underlying ZIKV infection and placental and blood-brain barriers trespassing. Also, we have included molecular alterations that elucidate the progression of CZS by proteomics and metabolomics studies. Lastly, this review comprises investigations into body fluid samples, which have aided to identify potential biomarkers associated with CZS.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Pregnancy , Female , Humans , Zika Virus Infection/diagnosis , Zika Virus/genetics , Placenta , Proteomics , Biomarkers
10.
Mol Cell Proteomics ; 23(3): 100722, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272115

ABSTRACT

Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Endothelial Cells/metabolism , Tandem Mass Spectrometry , Extracellular Matrix/metabolism , Glioma/metabolism , Epigenesis, Genetic , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Brain Neoplasms/drug therapy , Tumor Microenvironment , Membrane Proteins/metabolism , ADAM Proteins/metabolism
11.
Appl Environ Microbiol ; 90(2): e0173623, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38259076

ABSTRACT

In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal ß-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface ß-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a ß-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble ß-1,3-glucan substantially inhibited this adhesion, indicating the involvement of ß-1,3-glucan recognition. Biotinylated ß-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the ß-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding ß-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to ß-1,3-glucans. These findings underscore the complexity of binding via ß-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of ß-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for ß-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.


Subject(s)
Acanthamoeba castellanii , Amoeba , beta-Glucans , Amoeba/metabolism , Mannose/metabolism , Proteomics , beta-Glucans/metabolism , Glucans/metabolism , Histoplasma/metabolism
12.
Mol Reprod Dev ; 91(1): e23735, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282317

ABSTRACT

Boar seminal plasma (SP) proteins were associated with differences on sperm resistance to cooling at 17°C. However, information about seminal plasma proteins in boars classified by capacity of semen preservation and in vivo fertility remains lacking. Thus, the objective was to evaluate the SP proteome in boars classified by capacity of semen preservation and putative biomarkers for fertility. The ejaculates from high-preservation (HP) showed higher progressive motility during all 5 days than the low-preservation (LP) boars. There was no difference for farrowing rate between ejaculates from LP (89.7%) and HP boars (88.4%). The LP boars presented lower total piglets born (14.0 ± 0.2) than HP (14.8 ± 0.2; p < 0.01). A total of 257 proteins were identified, where 184 were present in both classes of boar, and 41 and 32 were identified only in LP and HP boars, respectively. Nine proteins were differently expressed: five were more abundant in HP (SPMI, ZPBP1, FN1, HPX, and C3) and four in LP boars (B2M, COL1A1, NKX3-2, and MPZL1). The HP boars had an increased abundance of SP proteins related to sperm resistance and fecundation process which explains the better TPB. LP boars had a higher abundance of SP proteins associated with impaired spermatogenesis.


Subject(s)
Semen Preservation , Semen , Swine , Animals , Male , Semen/metabolism , Semen Preservation/veterinary , Proteomics , Insemination, Artificial , Spermatozoa , Fertility , Semen Analysis , Seminal Plasma Proteins/metabolism , Sperm Motility
13.
Proteomics Clin Appl ; 18(1): e2300008, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37329193

ABSTRACT

PURPOSE: Our main goal is to identify the alterations in the amniotic fluid (AF) metabolome in Zika virus (ZIKV)-infected patients and their relation to congenital Zika syndrome (CZS) progression. EXPERIMENTAL DESIGN: We applied an untargeted metabolomics strategy to analyze seven AF of pregnant women: healthy women and ZIKV-infected women bearing non-microcephalic and microcephalic fetuses. RESULTS: Infected patients were characterized by glycerophospholipid metabolism impairment, which is accentuated in microcephalic phenotypes. Glycerophospholipid decreased concentration in AF can be a consequence of intracellular transport of lipids to the placental or fetal tissues under development. The increased intracellular concentration of lipids can lead to mitochondrial dysfunction and neurodegeneration caused by lipid droplet accumulation. Furthermore, the dysregulation of amino acid metabolism was a molecular fingerprint of microcephalic phenotypes, specifically serine, and proline metabolisms. Both amino acid deficiencies were related to neurodegenerative disorders, intrauterine growth retardation, and placental abnormalities. CONCLUSIONS AND CLINICAL RELEVANCE: This study enhances our understanding of the development of CZS pathology and sheds light on dysregulated pathways that could be relevant for future studies.


Subject(s)
Microcephaly , Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Female , Pregnancy , Humans , Zika Virus Infection/complications , Amniotic Fluid , Placenta , Amino Acids , Lipids
14.
J Exp Bot ; 75(5): 1390-1406, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37975812

ABSTRACT

Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.


Subject(s)
Abscisic Acid , Bixaceae , Plant Extracts , Bixaceae/genetics , Bixaceae/metabolism , Abscisic Acid/metabolism , Proteomics , Plant Breeding , Carotenoids/metabolism
16.
Development ; 150(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37823342

ABSTRACT

Many developmental processes associated with fruit development occur at the floral meristem (FM). Age-regulated microRNA156 (miR156) and gibberellins (GAs) interact to control flowering time, but their interplay in subsequent stages of reproductive development is poorly understood. Here, in tomato (Solanum lycopersicum), we show that GA and miR156-targeted SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL or SBP) genes interact in the tomato FM and ovary patterning. High GA responses or overexpression of miR156 (156OE), which leads to low expression levels of miR156-silenced SBP genes, resulted in enlarged FMs, ovary indeterminacy and fruits with increased locule number. Conversely, low GA responses reduced indeterminacy and locule number, and overexpression of a S. lycopersicum (Sl)SBP15 allele that is miR156 resistant (rSBP15) reduced FM size and locule number. GA responses were partially required for the defects observed in 156OE and rSBP15 fruits. Transcriptome analysis and genetic interactions revealed shared and divergent functions of miR156-targeted SlSBP genes, PROCERA/DELLA and the classical WUSCHEL/CLAVATA pathway, which has been previously associated with meristem size and determinacy. Our findings reveal that the miR156/SlSBP/GA regulatory module is deployed differently depending on developmental stage and create novel opportunities to fine-tune aspects of fruit development that have been important for tomato domestication.


Subject(s)
MicroRNAs , Solanum lycopersicum , Gibberellins/metabolism , Solanum lycopersicum/genetics , Flowers , Meristem/metabolism , Ovary/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
17.
Microorganisms ; 11(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37894025

ABSTRACT

The fungicide iprodione (IPR) (3-(3,5-dichlorophenyl) N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide) is a highly toxic compound. Although IPR has been restricted, it is still being applied in many places around the world, constituting an environmental risk. The biodegradation of IPR is an attractive option for reducing its residues. In this study, we isolated thirteen IPR-tolerant bacteria from a biopurification system designed to treat pesticides. A study of biodegradation using different strains was comparatively evaluated, and the best degradation rate of IPR was presented by Achromobacter sp. C1 with a half-life (T1/2) of 9 days. Based on a nano-LC-MS/MS analysis for the strains, proteins solely expressed in the IPR treatment were identified by highlighting the strain Achromobacter sp. C1, with 445 proteins primarily involved in the biosynthesis of secondary metabolites and microbial metabolism in diverse environments. Differentially expressed protein amidases were involved in six metabolic pathways. Interestingly, formamidase was inhibited while other cyclases, i.e., amidase and mandelamide hydrolase, were overexpressed, thereby minimizing the effect of IPR on the metabolism of strain C1. The dynamic changes in the protein profiles of bacteria that degrade IPR have been poorly studied; therefore, our results offer new insight into the metabolism of IPR-degrading microorganisms, with special attention paid to amidases.

18.
Lab Invest ; 103(10): 100222, 2023 10.
Article in English | MEDLINE | ID: mdl-37507024

ABSTRACT

Proliferative verrucous leukoplakia (PVL) is an oral potentially malignant disorder associated with high risk of malignant transformation. Currently, there is no treatment available, and restrictive follow-up of patients is crucial for a better prognosis. Oral leukoplakia (OL) shares some clinical and microscopic features with PVL but exhibits different clinical manifestations and a lower rate of malignant transformation. This study aimed to investigate the proteomic profile of PVL in tissue and saliva samples to identify potential diagnostic biomarkers with therapeutic implications. Tissue and saliva samples obtained from patients with PVL were compared with those from patients with oral OL and controls. Label-free liquid chromatography with tandem mass spectrometry was employed, followed by qualitative and quantitative analyses, to identify differentially expressed proteins. Potential biomarkers were identified and further validated using immunohistochemistry. Staining intensity scan analyses were performed on tissue samples from patients with PVL, patients with OL, and controls from Brazil, Spain, and Finland. The study revealed differences in the immune system, cell cycle, DNA regulation, apoptosis pathways, and the whole proteome of PVL samples. In addition, liquid chromatography with tandem mass spectrometry analyses showed that calreticulin (CALR), receptor of activated protein C kinase 1 (RACK1), and 14-3-3 Tau-protein (YWHAQ) were highly expressed in PVL samples. Immunohistochemistry validation confirmed increased CARL expression in PVL compared with OL. Conversely, RACK1 and YWHA were highly expressed in oral potentially malignant disorder compared to the control group. Furthermore, significant differences in CALR and RACK1 expression were observed in the OL group when comparing samples with and without oral epithelial dysplasia, unlike the PVL. This research provides insights into the molecular mechanisms underlying these conditions and highlights potential targets for future diagnostic and therapeutic approaches.


Subject(s)
Mouth Neoplasms , Humans , Mouth Neoplasms/pathology , Proteomics , Tandem Mass Spectrometry , Leukoplakia, Oral/diagnosis , Leukoplakia, Oral/pathology , Leukoplakia, Oral/therapy , Biomarkers , Chromatography, Liquid , Cell Transformation, Neoplastic/pathology
19.
Exp Parasitol ; 251: 108570, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37330106

ABSTRACT

Aedes aegypti are vector insects of arboviruses such as dengue, Zika, and chikungunya. All available vector control methods have limited efficacy, highlighting the urgent need to find alternative ones. Evidence shows that arachnids like ticks are sources of biologically active compounds. Moreover, chemical modulation of the locomotor and immune systems of vector insects can be used to control arbovirus transmission. The present study evaluated the effectiveness of crude saliva of female Amblyomma cajennense sensu stricto (s.s.) ticks in reducing locomotor activity and inducing an immune response in Ae. aegypti females. Additionally, the study evaluated the protein constitution of tick saliva. For this purpose, the crude saliva obtained from several semi-engorged A. cajennense females was used. A volume of 0.2 nL of crude tick saliva was administered to mosquitoes by direct intrathoracic microinjection. The effect of the tick's saliva on the locomotor activity of the mosquito was observed using Flybox, a video-automated monitoring system, and the hemolymph hemocyte levels were quantified by reading slides under a light microscope. The protein concentration of the crude tick saliva was 1.27 µg/µL, and its electrophoretic profile indicates the presence of proteins with a molecular weight ranging between ∼17 and 95 kDa. Microplusins, ixodegrins, cystatin, actins, beta-actin, calponin, albumin, alpha-globulins, and hemoglobin were the main proteins identified by proteomics in the saliva of A. cajennense. The microinjected saliva had low toxicity for Ae. aegypti females and significantly reduced their locomotor activity, especially in the transition between the light and dark phases. The crude tick saliva did not change the period and rhythmicity of the circadian cycle. The tick saliva significantly increased the number of hemocytes two days after injection and reduced it after five days. These results suggest that further evaluation of the biological properties of tick saliva proteins against Ae. aegypti would be of interest.


Subject(s)
Aedes , Ixodidae , Zika Virus Infection , Zika Virus , Animals , Female , Saliva , Amblyomma , Hemocytes , Mosquito Vectors , Locomotion , Zika Virus/physiology
20.
J Exp Bot ; 74(17): 5124-5139, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37347477

ABSTRACT

The miRNA156 (miR156)/SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL/SBP) regulatory hub is highly conserved among phylogenetically distinct species, but how it interconnects multiple pathways to converge to common integrators controlling shoot architecture is still unclear. Here, we demonstrated that the miR156/SlSBP15 node modulates tomato shoot branching by connecting multiple phytohormones with classical genetic pathways regulating both axillary bud development and outgrowth. miR156-overexpressing plants (156-OE) displayed high shoot branching, whereas plants overexpressing a miR156-resistant SlSBP15 allele (rSBP15) showed arrested shoot branching. Importantly, the rSBP15 allele was able to partially restore the wild-type shoot branching phenotype in the 156-OE background. rSBP15 plants have tiny axillary buds, and their activation is dependent on shoot apex-derived auxin transport inhibition. Hormonal measurements revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) concentrations were lower in 156-OE and higher in rSBP15 axillary buds, respectively. Genetic and molecular data indicated that SlSBP15 regulates axillary bud development and outgrowth by inhibiting auxin transport and GOBLET (GOB) activity, and by interacting with tomato BRANCHED1b (SlBRC1b) to control ABA levels within axillary buds. Collectively, our data provide a new mechanism by which the miR156/SPL/SBP hub regulates shoot branching, and suggest that modulating SlSBP15 activity might have potential applications in shaping tomato shoot architecture.


Subject(s)
MicroRNAs , Plant Proteins , Solanum lycopersicum , Gene Expression Regulation, Plant , Hormones , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Shoots/metabolism , Plants, Genetically Modified/genetics , Promoter Regions, Genetic , Solanum lycopersicum/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...