Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Braz J Microbiol ; 54(3): 2197-2204, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37261620

ABSTRACT

The aim of the work was to evaluate antagonistic activity of Lactobacillus spp. and Bifidobacterium spp. in vitro against cariogenic Streptococcus mutans UA 159 and viability in chewing gum, during storage. Antagonistic activity was evaluated in vitro by the "spot on the lawn" test. Two bacteria were chosen and subjected to lyophilization and microencapsulation using the atomization method, containing polyvinylpyrrolidone polymer and lactose as encapsulating agents. For application in food matrices, four treatments were elaborated: chewing gum containing lyophilized B. lactis B94 (BLL), microencapsulated B. lactis B94 (BLE), lyophilized L. brevis (LBL), and microencapsulated L. brevis (LBE). Both microorganisms demonstrated a high capacity for inhibition against S. mutans, when compared to oral antiseptic chlorhexidine 0.2% in vitro, and according to the test of sensitivity profile to proteolytic enzymes, all the bacteria tested are producers of antimicrobial peptides, resulting in the inhibitory activity of the cariogenic bacterium. Furthermore, the viability of B. lactis B94 and L. brevis was maintained after microencapsulation, indicating that the process was efficient, with no significant difference (p < 0.05) between the results. And, in the chewing gum containing the bacteria during the storage period (33 days), it was found that cell immobilization did not significantly influence (p < 0.05) the counts of L. brevis but benefited the viability of B. lactis B94. Therefore, both probiotic bacteria are producers of antimicrobial substances with the ability to inhibit S. mutans, in vitro. The microencapsulation was considered efficient since it influenced the viability of B. lactis B94 (> 8 log CFU/g); however, the microencapsulation did not influence the viability of L. brevis since in both lyophilized and encapsulated form; the concentration of the bacteria remained above 8 log CFU/g during the storage period of the chewing gum.


Subject(s)
Probiotics , Streptococcus mutans , Lactobacillus/physiology , Chewing Gum , Bifidobacterium/physiology , Probiotics/pharmacology
2.
Food Sci. Technol (SBCTA, Impr.) ; 37(spe): 1-4, Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-892231

ABSTRACT

Abstract Carotenoids are pigments that can be applied to food but they are unstable towards certain food intrinsic conditions, as well as processing ones. Microencapsulation is an alternative to increasing their stability. This study aimed to produce carotenoids by Phaffia rhodozyma crops and promote their microencapsulation by lyophilization with soy protein as the wall material, in different proportions. High process yield of 96% and encapsulation efficiency of around 65% were observed at the ratios under study. Well-defined and separate micrometer-scale particles with different shapes and sizes were formed and the protection of the compounds of interest was confirmed by differential scanning calorimetry which showed that the endothermic event - typical of the free extract after encapsulation - did not occur.

SELECTION OF CITATIONS
SEARCH DETAIL
...