Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(47): 71709-71720, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35599288

ABSTRACT

A fixed-bed column packed with copper oxide pellets (FBC-CuO) combined with peroxydisulfate (PDS) as a primary oxidant was assessed as an option for simultaneously wastewater decontamination (antibiotics) and disinfection (bacteria, viruses, and protozoa). Preliminary to these experiments, phenol was used as the target molecule to investigate the working mode of FBC-CuO under various operating conditions, such as varying flow rates, initial persulfate, and phenol concentrations. Then, the removal of a mix of five representative antibiotics (amoxicillin (AMX), cefalexin (CFX), ofloxacin (OFL), sulfamethoxazole (SMX), and clarithromycin (CLA)) in secondary treated urban wastewater (STWW) was evaluated. AMX, CFX, and OFL were effectively removed by simply flowing through the FBC-CuO, and the addition of PDS (500 µM) systematically enhanced the degradation of all targeted antibiotics, which is also the necessary condition for the removal of SMX and CLA. Urban wastewater disinfection was evaluated by monitoring targeted pathogens originally in the STWW. A significant reduction of Escherichia coli, Enterococcus, F-specific RNA bacteriophages was observed after the treatment by FBC-CuO with 500 µM PDS. X-ray diffraction measurement and scanning electron microscopy performed on CuO pellets before and after treatment confirmed that the structure of the catalyst was preserved without any phase segregation. Finally, quantification of Cu(II) at the outlet of FBC-CuO indicate a non-negligible but limited released. All these results underline the potential of the FBC-CuO combined with PDS at the field scale for the degradation of micropollutants and inactivation of pathogens in wastewater.


Subject(s)
Copper , Wastewater , Amoxicillin , Anti-Bacterial Agents/pharmacology , Cephalexin , Clarithromycin , Copper/chemistry , Disinfection , Escherichia coli , Ofloxacin , Oxidants , Oxides , Phenol , Sulfamethoxazole
3.
Environ Sci Pollut Res Int ; 28(39): 55014-55028, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34121160

ABSTRACT

Two compositions of graphene oxide-magnetite nanocomposites were studied as catalysts in the heterogeneous Fenton process. Transmission electron microscopy and X-ray diffraction revealed that the graphene oxide sheets were covered with nanoparticles of magnetite, with an average crystallite size of 7 nm. Infrared spectroscopy analysis indicated that the phases interacted through covalent Fe-O-C bonds. The composites presented significantly improved catalytic activity, compared to pure magnetite, with a synergistic effect of up to a factor of 17.1 for the Fenton degradation of caffeine, achieving total removal after 90 min. This synergistic effect was a consequence of the interaction between the phases, resulting in improved mass transfer of caffeine to the catalyst surface, adsorption and efficient degradation, with enhanced HO• generation. The surface reaction constant increased by up to three orders of magnitude, demonstrating the important role of graphene oxide in the degradation kinetics of the heterogeneous Fenton process. The surface-bonded hydroxyl radicals were responsible for caffeine degradation, achieving 9.4 µmol L-1. After five degradation cycles, a loss of Fe-O-C bonds and increase in oxygenated groups were associated with a small decrease of caffeine removal efficiency, from 98 to 82%, without significant iron leaching, in the dark, and with low consumption of hydrogen peroxide.


Subject(s)
Caffeine , Nanocomposites , Graphite , Magnetic Phenomena , Physics
4.
J Hazard Mater ; 413: 125388, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33930955

ABSTRACT

The catalytic activity of layered double hydroxides, with and without insertion of copper, was evaluated in a heterogeneous Fenton process for degradation of the antibiotic sulfathiazole (STZ). The characterizations with different techniques revealed lamellar structures formed by stacking of layers containing magnesium, iron, and copper cations. The insertion of copper in the lamellar structure increased the specific area of the material and the degradation kinetics, achieving complete STZ removal after 90 min. X-ray photoelectron spectroscopy analysis showed the presence of Cu(II) and Cu(I) surface sites, which contributed to the generation of hydroxyl and hydroperoxyl/superoxide radicals. It also indicated an increase of Cu(I) content after use. For both materials, but specially for LDH without copper, addition of tert-butyl alcohol and p-benzoquinone hindered STZ degradation, indicating the importance of hydroxyl and hydroperoxyl/superoxide radicals in the degradation process, respectively. These results demonstrated the potential of copper-modified MgFe-CO3 as a catalyst for the degradation of emerging contaminants, offering the benefits of easy preparation and high efficiency in the Fenton process.

5.
J Hazard Mater ; 146(3): 508-13, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17531377

ABSTRACT

The red Fe(2+)-phenanthroline complex is the basis of a classical spectrophotometric method for determination of iron. Due to the toxicity of this complexing agent, direct disposal of the wastewaters generated in analytical laboratories is not environmentally safe. This work evaluates the use of the solar photo-Fenton process for the treatment of laboratory wastewaters containing phenanthroline. Firstly, the degradation of phenanthroline in water was evaluated at two concentration levels (0.1 and 0.01%, w/v) and the efficiencies of degradation using ferrioxalate (FeOx) and ferric nitrate were compared. The 0.01% w/v solution presented much higher mineralization, achieving 82% after 30min of solar irradiation with both iron sources. The solar photo-Fenton treatment of laboratory wastewater containing, in addition to phenanthroline, other organic compounds such as herbicides and 4-chlorophenol, equivalent to 4,500mgL(-1) total organic carbon (TOC) resulted in total degradation of phenanthroline and 25% TOC removal after 150min, in the presence of either FeOx or ferric nitrate. A ratio of 1:10 dilution of the residue increased mineralization in the presence of ferrioxalate, achieving 38% TOC removal after 120min, while use of ferric nitrate resulted in only 6% mineralization over the same period.


Subject(s)
Phenanthrolines/chemistry , Phenanthrolines/radiation effects , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Laboratories , Nitrates/chemistry , Oxalates/chemistry , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL
...