ABSTRACT
Two experiments were conducted to test the hypothesis that when using similar protein/amino acid diets and environment temperature conditions, the performance and carbon turnover in muscle and liver tissues, as measured by the incorporation of stable isotopes ((13)C/(12)C), must be different between fast-growing Cobb 500® and slow-growing Label Rouge broilers. For both experiments (Cobb and Label Rouge), 21-d-old birds were distributed in a completely randomised, 3 × 3 factorial design; three environmental temperatures (cyclic heat stress ad libitum, 22°C ad libitum, and 22°C restricted) and three crude protein concentrations (189.1, 210 and 220 g/kg CP) were used. The Cobb 500® had better performance with higher concentrations of crude protein. Cyclic heat stress (a temperature factor), negatively affected this genetic strain's performance. For the Label Rouge birds, the crude protein concentrations in the diet presented inconsistent results and cyclic heat stress did not affect the performance. The carbon turnover rate was affected in the Cobb 500® strain, with a high protein content reducing carbon turnover in the evaluated tissues (liver and muscles). Feed intake had a greater impact on carbon turnover rates than cyclic heat stress. The Label Rouge birds were not affected by the evaluated factors, suggesting that genetic improvement has a leading role on tissue carbon turnover. There is a genetic influence on carbon turnover in the liver and muscle tissues of broiler chickens. In addition, genetically fast-growing broilers are more susceptible to variations in diet composition and environmental temperature than less rapidly growing animals.
Subject(s)
Amino Acids/metabolism , Chickens/physiology , Dietary Proteins/metabolism , Heat-Shock Response , Liver/metabolism , Muscle, Skeletal/metabolism , Amino Acids/administration & dosage , Animal Feed/analysis , Animals , Chickens/genetics , Chickens/growth & development , Diet/veterinary , Dietary Proteins/administration & dosage , Dose-Response Relationship, Drug , Heat-Shock Response/drug effects , Hot Temperature/adverse effects , Liver/drug effects , Male , Muscle, Skeletal/drug effects , Pectoralis Muscles/drug effects , Pectoralis Muscles/metabolism , Random AllocationABSTRACT
The effect of replacing corn with low-tannin sorghum on broiler performance, carcass yield, integrity of mucosa of small intestine segments, and activity of membrane enzymes of the jejunum is investigated. A total of 594 male Cobb-500 broiler chicks were randomly assigned to 3 dietary treatments: 100% corn (control), 50% corn replacement with low-tannin sorghum (low sorghum), and 100% corn replacement with low-tannin sorghum (high sorghum). Body weight gain, feed consumption, feed conversion, and carcass yield were determined at 7, 21, and 42 d, and segments of the small intestine were collected. Feed conversion and weight gain were impaired at d 42 in broilers fed the high-sorghum diet, but no differences were observed for carcass yield among the treatments (P > 0.05). Crypt cell mitotic index of the jejunum and ileum at d 21 and 42 was lower in broilers fed the control diet than in those fed low- and high-sorghum diets (P < 0.05). Aminopeptidase activity was higher in broilers fed the control diet than in those fed low- and high-sorghum diets irrespective of age (P < 0.05). Conversely, intestinal alkaline phosphatase activity in the small intestine did not differ among the dietary treatments (P > 0.05). Our results indicate that 50% corn replacement with low-tannin sorghum is suitable for broiler diets, whereas 100% corn replacement with low-tannin sorghum had negative effects on the intestinal mucosa and performance of broilers at 42 d.
Subject(s)
Animal Feed/analysis , Chickens/growth & development , Diet/veterinary , Intestinal Mucosa/physiology , Sorghum , Zea mays , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Aminopeptidases/genetics , Aminopeptidases/metabolism , Animal Nutritional Physiological Phenomena , Animals , Cell Proliferation , Intestinal Mucosa/cytology , Male , Weight GainABSTRACT
The objective of the present study was to evaluate the effects of different dietary crude protein (CP) and metabolizable energy (ME) levels on the performance, internal and external egg quality, and cloacal temperature of commercial layers reared in hot climate. In this trial, 100 commercial Hy-Line W-36 layers between 20 and 32 weeks of age were distributed according to a completely randomized experimental design with a 2 x 2 factorial arrangement, consisting of two CP levels (15 e 18%) and two ME contents (2700 and 3100 kcal/kg) with five replicates per treatment and 10 birds per replicate. Performance (feed intake, egg production, egg mass, and feed conversion ratio), internal (Haugh units and albumen and yolk percentage) and external (eggshell % and thickness) egg quality parameters were evaluated. Cloacal temperature was measured in two birds per replicate at 8:00 h and 13:00 h. The diet containing 2700 kcal ME/kg promoted the best performance, whereas the worse performance observed in birds fed the diet with 3100 ME/kg was partially recovered when the diet contained 18% CP. Haugh units worsened as dietary CP level increased. The other external and internal egg quality parameters were not affected by dietary CP or ME levels. The cloacal temperature of birds fed 15% CP was lower in the morning and higher in the afternoon relative to those fed 18% CP, which temperature did not change during the day. It was concluded that dietary CP and ME levels influenced the performance and the body temperature of commercial layers.(AU)