Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 30(7): 1937-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24510403

ABSTRACT

Fermentation broth and biomass from three strains of Botryodiplodia theobromae were characterized by high performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) method, in order to quantify different phytohormones and to identify amino acid conjugates of jasmonic acid (JA) present in fermentation broths. A liquid-liquid extraction with ethyl acetate was used as sample preparation. The separation was carried out on a C18 reversed-phase HPLC column followed by analysis via ESI-MS/MS. The multiple reaction monitoring mode was used for quantitative measurement. For the first time, indole-3-acetic acid, indole-3-propionic acid, indole-3-butyric acid and JA were identified and quantified in the ethyl acetate extracts from the biomass, after the separation of mycelium from supernatant. The fermentation broths showed significantly higher levels of JA in relation to the other phytohormones. This is the first report of the presence of gibberellic acid, abscisic acid, salicylic acid and the cytokinins zeatin, and zeatin riboside in fermentation broths of Botryodiplodia sp. The presence of JA-serine and JA-threonine conjugates in fermentation broth was confirmed using HPLC-ESI tandem mass spectrometry in negative ionization mode, while the occurrence of JA-glycine and JA-isoleucine conjugates was evidenced with the same technique but with positive ionization. The results demonstrated that the used HPLC-ESI-MS/MS method was effective for analysing phytohormones in fermentation samples.


Subject(s)
Ascomycota/metabolism , Chromatography, High Pressure Liquid/methods , Fermentation , Plant Growth Regulators/analysis , Tandem Mass Spectrometry/methods , Abscisic Acid/analysis , Cyclopentanes/analysis , Gibberellins/analysis , Indoleacetic Acids/analysis , Indoles/analysis , Isopentenyladenosine/analogs & derivatives , Isopentenyladenosine/analysis , Oxylipins/analysis , Spectrometry, Mass, Electrospray Ionization , Zeatin/analysis
2.
Nat Prod Commun ; 7(1): 47-50, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22428242

ABSTRACT

The aqueous ethanol extract of Thalassia testudinum leaves (BM-21) is now being developed in Cuba as an herbal medicine due to its promising pharmacological properties. Although some interesting biological activities of BM-21 have already been reported, its chemical composition remains mostly unknown. Thus, we now describe the qualitative and quantitative analyzes of BM-21 using standard phytochemical screening techniques, including colorimetric quantification, TLC and HPLC analyses. Phytochemical investigation of BM-21 resulted in the isolation and identification of a new phenolic sulfate ester (1), along with ten previously described phenolic derivatives (2-11), seven of which have never been previously reported from the genus Thalassia. The structures of these compounds were established by analysis of their spectroscopic (1D and 2D NMR) and spectrometric (HRMS) data, as well as by comparison of these with those reported in the literature. Furthermore, BM-21 was found to exhibit strong antioxidant activity in four different free radical scavenging assays (HO*, RO2*, O2-* and DPPH*). Consequently, this is the first study which highlights the phytochemical composition of BM-21 and demonstrates that this product is a rich source of natural antioxidants with potential applications in pharmaceutical, cosmetic and food industries.


Subject(s)
Antioxidants/pharmacology , Hydrocharitaceae/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology
3.
J Chem Ecol ; 37(12): 1341-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22170347

ABSTRACT

Two new quinones, (an isoprenoid quinone, and a dimeric anthraquinone) named naphthotectone and anthratectone, respectively, were isolated from bioactive leaf extracts from Tectona grandis. Their structures were determined by a combination of 1D and 2D NMR techniques. The bioactivity profile of naphthotectone was assessed using the etiolated wheat coleoptiles bioassay in aqueous solutions at concentrations ranging from 10(-3) to 10(-5)M, as well as the standard target species lettuce, cress, tomato, and onion. Naphthotectone showed high level of activities in both bioassays. This fact, along with the presence of this compound as the major component in Tectona grandis, suggests that it may be involved in the allelopathic activity previously described for this species, and probably in other defense mechanisms.


Subject(s)
Lamiaceae/chemistry , Plant Leaves/chemistry , Quinones/isolation & purification , Quinones/pharmacology , Biological Assay , Biological Products/isolation & purification , Biological Products/pharmacology , Cuba , Magnoliopsida/drug effects , Magnoliopsida/growth & development , Species Specificity , Spectrophotometry, Infrared , Triticum/drug effects , Triticum/growth & development
4.
J Nat Prod ; 73(10): 1623-7, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20879757

ABSTRACT

The structure of the known 2''-O-α-rhamnosyl-4''-O-methylvitexin (apigenin-8-C-α-rhamnosyl-(1→2)-ß-4-O-methylglucopyranoside), isolated from the leaves of Piper ossanum, was revised to acacetin-8-C-neohesperidoside (acacetin-8-C-α-rhamnosyl-(1→2)-ß-glucopyranoside or 2''-O-α-rhamnosyl-4'-O-methylvitexin) (1). The NMR data and theoretical calculations established the preferred conformation of 1, which is controlled by CH/π interactions. This phenomenon explains the unusual chemical shifts of some protons in the molecule, besides other weak intramolecular interactions such as the anomeric effect, the Δ2 effect, and several hydrogen bonds.


Subject(s)
Flavonoids/chemistry , Flavonoids/isolation & purification , Glycosides/chemistry , Glycosides/isolation & purification , Piper/chemistry , Crystallography, X-Ray , Cuba , Hydrogen Bonding , Molecular Conformation , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Leaves/chemistry
5.
Nat Prod Commun ; 5(8): 1187-90, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20839615

ABSTRACT

A method involving flash chromatography, semi-preparative phenylhexyl RP HPLC-DAD-ELSD combined with analytic polar-RP HPLC-DAD, was applied to separate and purify six highly nitrogenated bases and a bicyclic amidine alkaloid, the major components of the marine sponge Niphates digitalis. Their structures were identified as 1,8-diazabicyclo[5.4.0]undec-7-ene (1), deoxycytidine (2), phenylalanine (3), adenosine (4), deoxyguanosine (5), adenine (6) and thymidine (7) on the basis of spectroscopic data analyses. This is the first report of these compounds in a marine sponge belonging to the Niphates genus and the first evidence of the presence of 1 from a natural source.


Subject(s)
Alkaloids/isolation & purification , Porifera/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Caribbean Region , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Humans , Magnetic Resonance Spectroscopy , Plasmodium berghei/drug effects
6.
Magn Reson Chem ; 48(5): 350-5, 2010 May.
Article in English | MEDLINE | ID: mdl-20391439

ABSTRACT

A careful NMR analysis, especially by 1D TOCSY and 1D ROESY, of a refined saponin fraction allowed us to determine the structure of three saponins from a polar extract of Agave brittoniana Trel. spp. Brachypus leaves. The use of 1D DOSY for the suppression of the solvent signal was useful to obtain the chemical shifts of anomeric signals. A full assignment of the (1)H and (13)C spectral data for the new saponins, agabrittonosides E-F (1-2) and the well-known Karatavioside C (3) and their methoxyl derivatives, is reported. The structures were established using a combination of 1D and 2D ((1)H, (1)H-COSY, TOCSY, ROESY, g-HSQC, g-HMBC and g-HSQC-TOCSY) NMR techniques and ESI-MS. In addition, the methoxylation of these furostane saponins in the presence of MeOH was studied.


Subject(s)
Agave/chemistry , Magnetic Resonance Spectroscopy/methods , Saponins/chemistry , Chromatography, High Pressure Liquid , Models, Molecular , Molecular Structure
7.
J Chem Ecol ; 36(4): 396-404, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20237951

ABSTRACT

A study was carried out on the allelopathic potential of four forest species, Tectona grandis, Aleurites fordii, Gliricidia sepium, and Maytenus buxifolia. The most active species, T. grandis, was selected to perform a phytochemical study. A new compound, abeograndinoic acid, was isolated, and elucidation of its structure showed that this compound has an unusual carbon skeleton. A further 21 known terpenoids-including 4 sesquiterpenoids, 8 diterpenes and 9 triterpenes-also were isolated. A biosynthetic scheme for the presence of the new compound is proposed. Bioactivity profiles that used etiolated wheat coleoptiles and phytotoxicity bioassays on the isolated compounds were conducted. The compounds that presented the highest phytotoxic activity are the diterpenes 9 (2-oxokovalenic acid) and 12 (19-hydroxyferruginol).


Subject(s)
Cotyledon/drug effects , Diterpenes/isolation & purification , Lamiaceae/chemistry , Terpenes/isolation & purification , Trees/chemistry , Triticum/drug effects , Allium/drug effects , Diterpenes/toxicity , Lamiaceae/toxicity , Lepidium/drug effects , Lactuca/drug effects , Solanum lycopersicum/drug effects , Terpenes/toxicity , Trees/toxicity
8.
Mar Biotechnol (NY) ; 11(1): 74-80, 2009.
Article in English | MEDLINE | ID: mdl-18607659

ABSTRACT

Daily topical application of the aqueous ethanolic extract of the marine sea grass, Thalassia testudinum, on mice skin exposed to UVB radiation resulted in a dose-dependent recovery of the skin macroscopic alterations over a 6-day period. Maximal effect (90%) occurred at a dose of 240 microg/cm(2), with no additional effects at higher doses. Bioassay-guided fractionation of the plant extract resulted in the isolation of thalassiolin B (1). Topical application of 1 (240 microg/cm(2)) markedly reduces skin UVB-induced damage. In addition, thalassiolin B scavenged 2,2-diphenyl-2-picrylhydrazyl radical with an EC(50) = 100 microg/ml. These results suggest that thalassiolin B is responsible for the skin-regenerating effects of the crude extract of T. testudinum.


Subject(s)
Antioxidants/pharmacology , Flavonoids/pharmacology , Hydrocharitaceae/chemistry , Skin/drug effects , Skin/radiation effects , Ultraviolet Rays/adverse effects , Animals , Antioxidants/chemistry , Dose-Response Relationship, Drug , Flavonoids/chemistry , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Radiation Injuries, Experimental/drug therapy , Skin/pathology
9.
Rev. biol. trop ; 56(4): 1645-1652, Dec. 2008. ilus, tab
Article in Spanish | LILACS | ID: lil-637769

ABSTRACT

Steroidal saponins from the plant Agave brittoniana with activity against the parasite Trichomona vaginalis. The genus Agave (Agavaceae), includes more than 300 species; around 16 of them show an homogeneous distribution throughout Cuba. Agave brittoniana (ssp. brachypus), is an endemic subspecies that grows in the central region of the country and its leaves are traditionally used in the treatment of parasitic diseases. The parasite Trichomonas vaginalis causes the disease known as trichomoniasis, that infects the genital tract. To test in vitro the plant against Trichomona vaginalis, the dried and powdered leaves were extracted three times with ethanol-water (7 : 3) by maceration at room temperature. The solvent was removed under reduced pressure and the extract was suspended in distilled water, defatted with n-hexane, and extracted with water-saturated n-butanol. After solvent removal, a portion of the n-butanol extract was hydrolyzed. After extraction with ethyl acetate the hydrolysis products were compared with authentic sapogenins samples using thin layer chromatography (TLC). Most of the sapogenins (yuccagenin and diosgenin) were isolated and their structures were confirmed. using nuclear magnetic resonance (NMR) experiments. The n-butanol extract was subjected to a separation process through column chromatography to obtain five fractions. After multiple separation processes by reversed phase high performance liquid chromatography (HPLC), the most active one produced one refined fraction that contained two saponins with the same aglycone (diosgenin) and one yuccagenin based saponin. Best results of the activity were obtained with the yuccagenin derived glycoside. Rev. Biol. Trop. 56 (4): 16451652. Epub 2008 December 12.


El género Agave, familia Agavaceae, tiene más de 300 especies, con aproximadamente 16 distribuidas en toda Cuba. Una de ellas, el Agave brittoniana Trel. (ssp. brachypus), es una subespecie endémica y sus hojas son tradicionalmente utilizadas en el tratamiento de enfermedades parasitarias. Se realizaron estudios "in vitro" de la actividad de productos de esta planta frente a Trichomona vaginalis. Las hojas secas y pulverizadas fueron extraídas tres veces con una mezcla de etanol-agua (7: 3) mediante maceración a temperatura ambiente. El disolvente fue evaporado a presión reducida y el extracto fue suspendido en agua destilada, desengrasado con n-hexano, y extraído con n-butanol saturado con agua. Luego de una extracción con acetato de etilo, los productos de la hidrólisis fueron comparados con patrones de sapogeninas mediante la cromatografía de capa fina (CCD). Aislamos las sapogeninas mayoritarias (yuccagenina y diosgenina) y confirmamos sus estructuras utilizando técnicas de resonancia magnética nuclear. Por otra parte, el extracto n-butanólico fue sometido a un proceso de separación biodirigido mediante cromatografía de columna, obteniéndose cinco fracciones. Después de múltiples separaciones, la más activa rindió una fracción purificada con dos sapogeninas con el mismo aglicón (diosgenina) y un glicósido de yucagenina. Los mejores resultados de esta actividad fueron obtenidos con el glicósido derivado de la yucagenina.


Subject(s)
Animals , Agave/chemistry , Antiprotozoal Agents/pharmacology , Plant Extracts/pharmacology , Saponins/pharmacology , Trichomonas vaginalis/drug effects , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Parasitic Sensitivity Tests , Saponins/chemistry , Saponins/isolation & purification
10.
Phytochemistry ; 69(15): 2708-15, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18834604

ABSTRACT

The bioactive fractions of Tectona grandis have yielded seven apocarotenoids, two of which have been isolated for the first time as natural products (tectoionols A and B). The chemical structures were determined through 1D and 2D nuclear magnetic resonance experiments. The absolute configuration of tectoionol A was determined using a modified Mosher methodology. Some NMR assignments for the compounds 9(S)-4-oxo-7,8-dihydro-beta-ionol and 3beta-hydroxy-7,8-dihydro-beta-ionone have been corrected on the basis of g-HSQC and g-HMBC experiments. The general bioactivities of isolated compounds have been studied using etiolated wheat coleoptiles. Those compounds that presented higher levels of activity were assayed on standard target species (Lactuca sativa, Lycopersicum esculentum, Lepidium sativum and Allium cepa).


Subject(s)
Carotenoids/isolation & purification , Carotenoids/pharmacology , Lamiaceae/chemistry , Biological Assay , Biological Products/isolation & purification , Biological Products/pharmacology , Capsicum/drug effects , Capsicum/growth & development , Solanum lycopersicum/drug effects , Solanum lycopersicum/growth & development , Solanum melongena/drug effects , Solanum melongena/growth & development , Triticum/drug effects , Triticum/growth & development
11.
Rev Biol Trop ; 56(4): 1645-52, 2008 Dec.
Article in Spanish | MEDLINE | ID: mdl-19419073

ABSTRACT

The genus Agave (Agavaceae), includes more than 300 species; around 16 of them show an homogeneous distribution throughout Cuba. Agave brittoniana (ssp. brachypus), is an endemic subspecies that grows in the central region of the country and its leaves are traditionally used in the treatment of parasitic diseases. The parasite Trichomonas vaginalis causes the disease known as trichomoniasis, that infects the genital tract. To test in vitro the plant against Trichomona vaginalis, the dried and powdered leaves were extracted three times with ethanol-water (7:3) by maceration at room temperature. The solvent was removed under reduced pressure and the extract was suspended in distilled water, defatted with n-hexane, and extracted with water-saturated n-butanol. After solvent removal, a portion of the n-butanol extract was hydrolyzed. After extraction with ethyl acetate the hydrolysis products were compared with authentic sapogenins samples using thin layer chromatography (TLC). Most of the sapogenins (yuccagenin and diosgenin) were isolated and their structures were confirmed. using nuclear magnetic resonance (NMR) experiments. The n-butanol extract was subjected to a separation process through column chromatography to obtain five fractions. After multiple separation processes by reversed phase high performance liquid chromatography (HPLC), the most active one produced one refined fraction that contained two saponins with the same aglycone (diosgenin) and one yuccagenin based saponin. Best results of the activity were obtained with the yuccagenin derived glycoside.


Subject(s)
Agave/chemistry , Antiprotozoal Agents/pharmacology , Plant Extracts/pharmacology , Saponins/pharmacology , Trichomonas vaginalis/drug effects , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Parasitic Sensitivity Tests , Saponins/chemistry , Saponins/isolation & purification
12.
Magn Reson Chem ; 45(7): 615-20, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17516586

ABSTRACT

A careful NMR analysis, especially 1D TOCSY and 1D ROESY, of two refined saponin fractions allowed us to determine the structures of four new saponins from a polar extract of the Agave brittoniana Trel. spp. Brachypus leaves. A full assignment of the 1H and 13C spectral data for these new saponins, agabrittonosides A-D (1-4), and one previously known saponin, karatavioside A (5) is reported. Their structures were established using a combination of 1D and 2D (1H, 1H-COSY, TOCSY, ROESY, g-HSQC, g-HMBC and g-HSQC-TOCSY) NMR techniques and ESI-MS. Moreover, the work represents a new approach to structural elucidation of saponins in refined fractions by NMR investigations.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Saponins/chemistry , Spirostans/chemistry , Agave/chemistry , Molecular Structure , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Saponins/isolation & purification , Spirostans/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...