Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J E Soft Matter ; 39(2): 20, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26920523

ABSTRACT

The motion of electrically charged particles under crowding conditions and subjected to evaporation-driven capillary flow might be ruled by collective diffusion. The concentration gradient developed inside an evaporating drop of colloidal suspension may reduce by diffusion the number of particles transported toward the contact line by convection. Unlike self-diffusion coefficient, the cooperative diffusion coefficient of interacting particles becomes more pronounced in crowded environments. In this work, we examined experimentally the role of the collective diffusion of charge-stabilized nanoparticles in colloidal patterning. To decouple the sustained evaporation from the contact line motion, we conducted evaporating menisci experiments with driven receding contact lines at low capillary number. This allowed us to explore convective assembly at fixed and low bulk concentration, which enabled to develop high concentration gradients. At fixed velocity of receding contact line, we explored a variety of substrate-particle systems where the particle-particle electrostatic interaction was changed (via p H) as well as the substrate receding contact angle and the relative humidity. We found that the particle deposition directed by receding contact lines may be controlled by the interplay between evaporative convection and collective diffusion, particularly at low particle concentration.


Subject(s)
Nanoparticles/chemistry , Diffusion , Glass/chemistry , Hydrogen-Ion Concentration , Polymethyl Methacrylate/chemistry , Surface Properties
2.
Langmuir ; 31(24): 6632-8, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26000909

ABSTRACT

Segregation of particles during capillary/convective self-assembly is interesting for self-stratification in colloidal deposits. In evaporating drops containing colloidal particles, the wettability properties of substrate and the sedimentation of particles can affect their accumulation at contact lines. In this work we studied the size segregation and discrimination of charged particles with different densities. We performed in-plane particle counting at evaporating triple lines by using fluorescence confocal microscopy. We studied separately substrates with very different wettability properties and particles with different charge-mass ratios at low ionic strength. We used binary colloidal suspensions to compare simultaneously the deposition of two different particles. The particle deposition rate strongly depends on the receding contact angle of the substrate. We further observed a singular behavior of charged polystyrene particles in binary mixtures under "salt-free" conditions explained by the "colloidal Brazil nut" effect.


Subject(s)
Polymethyl Methacrylate/chemistry , Colloids/chemistry , Particle Size , Surface Properties , Wettability
3.
Soft Matter ; 11(5): 987-93, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25520154

ABSTRACT

Complete understanding of colloidal assembly is still a goal to be reached. In convective assembly deposition, the concentration gradients developed in evaporating drops or reservoirs are usually significant. However, collective diffusion of charge-stabilized particles has been barely explored. The balance between convective and diffusive flows may dictate the particle dynamics inside evaporating colloidal drops. In this work we performed in situ counting of fluorescent particles in the vicinity of the triple line of evaporating sessile drops by using confocal laser scanning microscopy. We used particles of different sizes, with different charge response over the pH scale and we focused on charged and nearly uncharged particles. Two substrates with different receding contact angles were used. Binary colloidal mixtures were used to illustrate simultaneously the accumulation of particles with two different charge states at the triple line. The deposition rate close to the triple line was different depending on the electric state of the particle, regardless of the substrate used.

4.
Langmuir ; 30(25): 7609-14, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24933625

ABSTRACT

Better control of colloidal assembly by convective deposition is particularly helpful in particle templating. However, knowledge of the different factors that can alter colloidal patterning mechanisms is still insufficient. Deposit morphology is strongly ruled by contact line dynamics, but the wettability properties of the substrate can alter it drastically. In this work, we experimentally examined the roles of substrate contact angle hysteresis and receding contact angle using driven evaporating menisci similar to the dip-coating technique but at a low capillary number. We used smooth substrates with very different wettability properties and nanoparticles of different sizes. For fixed withdrawal velocity, evaporation conditions, and nanoparticle concentration, we analyzed the morphology of the deposits formed on each substrate. A gradual transition from stripe-like patterns to a film was observed as the contact angle hysteresis and receding contact angle were lowered.

SELECTION OF CITATIONS
SEARCH DETAIL
...