Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 42(18): 5669-74, 2003 Sep 08.
Article in English | MEDLINE | ID: mdl-12950216

ABSTRACT

The two-dimensional (2D) iron trimellitate [Fe(H(2)O)(2)(C(9)O(6)H(4))].H(2)O, labeled MIL-67, has been obtained under hydrothermal conditions (473 K, 48 h). In the 2D structure of MIL-67, the Fe(2+) ions display two different octahedral environments: [FeO(4)(H(2)O)(2)] and [FeO(2)(H(2)O)(4)]. These octahedra share an apical water molecule to form infinite chains. The chains are linked by partly deprotonated C(9)O(6)H(4)(2-) anions to give hybrid organic-inorganic layers; the remaining acidic-CO(2)H group is dangling in the interlayer space. Below 8(1) K, MIL-67 displays a canted antiferromagnetic behavior, according to analyses via magnetic measurements and Mössbauer spectroscopy. Crystal data for MIL-67 are as follows: triclinic; space group P1 (No. 2), with a = 6.9671(2) A, b = 7.3089(3) A, c = 12.5097(3) A, alpha = 78.758(1) degrees, beta = 89.542(2) degrees, and gamma = 65.197(1) degrees; volume V = 565.21(3) A(3); and Z = 2.

3.
J Am Chem Soc ; 124(45): 13519-26, 2002 Nov 13.
Article in English | MEDLINE | ID: mdl-12418906

ABSTRACT

The first three-dimensional chromium(III) dicarboxylate, MIL-53as or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)].[HO(2)C-C(6)H(4)-CO(2)H](0.75), has been obtained under hydrothermal conditions (as: as-synthesized). The free acid can be removed by calcination giving the resulting solid, MIL-53ht or Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)]. At room temperature, MIL-53ht adsorbs atmospheric water immediately to give Cr(III)(OH) x [O(2)C-C(6)H(4)-CO(2)] x H(2)O or MIL-53lt (lt: low-temperature form, ht: high-temperature form). Both structures, which have been determined by using X-ray powder diffraction data, are built up from chains of chromium(III) octahedra linked through terephthalate dianions. This creates a three-dimensional structure with an array of one-dimensional large pore channels filled with free disordered terephthalic molecules (MIL-53as) or water molecules (MIL-53lt); when the free molecules are removed, this leads to a nanoporous solid (MIL-53ht) with a Langmuir surface area over 1500 m(2)/g. The transition between the hydrated form (MIL-53lt) and the anhydrous solid (MIL-53ht) is fully reversible and followed by a very high breathing effect (more than 5 A), the pores being clipped in the presence of water molecules (MIL-53lt) and reopened when the channels are empty (MIL-53ht). The thermal behavior of the two solids has been investigated using TGA and X-ray thermodiffractometry. The sorption properties of MIL-53lt have also been studied using several organic solvents. Finally, magnetism measurements performed on MIL-53as and MIL-53lt revealed that these two phases are antiferromagnetic with Néel temperatures T(N) of 65 and 55 K, respectively. Crystal data for MIL-53as is as follows: orthorhombic space group Pnam with a = 17.340(1) A, b = 12.178(1) A, c = 6.822(1) A, and Z = 4. Crystal data for MIL-53ht is as follows: orthorhombic space group Imcm with a = 16.733(1) A, b = 13.038(1) A, c = 6.812(1) A, and Z = 4. Crystal data for MIL-53lt is as follows: monoclinic space group C2/c with a = 19.685(4) A, b = 7.849(1) A, c = 6.782(1) A, beta = 104.90(1) degrees, and Z = 4.

4.
Inorg Chem ; 41(22): 5647-9, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12401065

ABSTRACT

The synthesis, characterization, and molecular structures of the first air-stable, hexacoordinated high spin Fe(II) porphyrins (1) with axial alcohols are reported (1 = Fe(II) meso-tetrakis(o-dichlorophenyl)-beta-octanitroporphyrin). The structure of 1 with two axial waters is also presented. The very different conformations and metrics observed with the two types of ligands illustrate the acute interplay between ligands, conformations, and spin states in Fe porphyrins.

6.
Angew Chem Int Ed Engl ; 40(15): 2831-2834, 2001 Aug 03.
Article in English | MEDLINE | ID: mdl-29711976

ABSTRACT

Nanoporosity, good thermal stability, antiferromagnetic ordering, and hydrogenation with basic catalytic character are four important properties of the large-pore (24MR), zeolitic nickel(II) phosphate, VSB-5 (Ni20 [(OH)12 (H2 O)6 ][(HPO4 )8 (PO4 )4 ]⋅12 H2 O), which has been prepared under alkaline hydrothermal conditions. The structure of VSB-5 is depicted: NiO6 octahedra: green; PO4 tetrahedra: red.

SELECTION OF CITATIONS
SEARCH DETAIL
...