Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2400797, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801201

ABSTRACT

A crucial aspect in shielding a variety of advanced electronic devices from electromagnetic detection involves controlling the flow of electromagnetic waves, akin to invisibility cloaks. Decades ago, the exploration of transformation optics heralded the dawn of modern invisibility cloaks, which has stimulated immense interest across various physical scenarios. However, most prior research is simplified to low-dimensional and stationary hidden objects, limiting their practical applicability in a dynamically changing world. This study develops a 3D large-scale intelligent cloak capable of remaining undetectable even in non-stationary conditions. By employing thousand-level reconfigurable full-polarization metasurfaces, this work has achieved an exceptionally high degree of freedom in sculpting the scattering waves as desired. Serving as the core computational unit, a hybrid inverse design enables the cloaked vehicle to respond in real-time, with a rapid reaction time of just 70 ms. These experiments integrate the cloaked vehicle with a perception-decision-control-execution system and evaluate its performance under random static positions and dynamic travelling trajectories, achieving a background scattering matching degree of up to 93.3%. These findings establish a general paradigm for the next generation of intelligent meta-devices in real-world settings, potentially paving the way for an era of "Electromagnetic Internet of Things."

2.
Adv Sci (Weinh) ; 11(2): e2305067, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949679

ABSTRACT

Radiative cooling, a technology that lowers the temperature of terrestrial objects by dissipating heat into outer space, presents a promising ecologically-benign solution for sustainable cooling. Recent years witness substantial progress in radiative cooling technologies, bringing them closer to commercialization. This comprehensive review provides a structured overview of radiative cooling technologies, encompassing essential principles, fabrication techniques, and practical applications, with the goal of guiding researchers toward successful commercialization. The review begins by introducing the fundamentals of radiative cooling and the associated design strategies to achieve it. Then, various fabrication methods utilized for the realization of radiative cooling devices are thoroughly discussed. This discussion includes detailed assessments of scalability, fabrication costs, and performance considerations, encompassing both structural designs and fabrication techniques. Building upon these insights, potential fabrication approaches suitable for practical applications and commercialization are proposed. Further, the recent efforts made toward the practical applications of radiative cooling technology, including its visual appearance, switching capability, and compatibility are examined. By encompassing a broad range of topics, from fundamental principles to fabrication and applications, this review aims to bridge the gap between theoretical research and real-world implementation, fostering the advancement and widespread adoption of radiative cooling technology.

3.
ACS Appl Mater Interfaces ; 13(43): 51718-51725, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34677928

ABSTRACT

Quantum dots (QDs) are semiconducting nanoparticles that exhibit unique fluorescent characteristics when excited by an ultraviolet light source. Owing to their highly saturated emissions, display panels using QDs as pixels have been presented. However, the complications of the nanofabrication procedure limit the industrial application of QDs. This study suggests a method to arrange high-aspect-ratio QD pixels by inducing both Laplace-pressure-driven capillary flow and thermally driven Marangoni flow. The evaporation of colloidal QDs induces a capillary flow that drives the QDs toward the inner tips of V-shaped structures. Additionally, the Marangoni flow arranges the gathered QDs at the tip; thus, they could form a high dune, overcoming the limitations of the existing capillary assembly method using evaporation. Using these phenomena, clover-shaped (assembly of V-shaped edges) templates were made to gather numerous QDs, and the clover with a 30° angle afforded the highest brightness among all the angle structures. Finally, by demonstrating a 100-cm2-sized QD microarray with high uniformity (98.6%), our method shows the feasibility of large-area fabrication, which has extensive application in manufacturing QD displays, anti-counterfeiting labels, and other QD-based optical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...