Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
J Neuroinflammation ; 21(1): 47, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347588

ABSTRACT

BACKGROUND: Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS: To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS: iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS: Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.


Subject(s)
Frontotemporal Dementia , Pick Disease of the Brain , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Haploinsufficiency , Lysosomes/metabolism , Microglia/pathology , Neuroinflammatory Diseases , Pick Disease of the Brain/metabolism , Progranulins/genetics , Progranulins/metabolism
2.
Stem Cells Transl Med ; 13(4): 309-316, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38244235

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is characterized by selective and progressive neurodegenerative changes in motor neural networks. Given the system complexity, including anatomically distributed sites of degeneration from the motor cortex to the spinal cord and chronic pro-inflammatory conditions, a cell-based therapeutic strategy could be an alternative approach to treating ALS. Lessons from previous mesenchymal stromal/stem cell (MSC) trials in ALS realized the importance of 3 aspects in current and future MSC therapy, including the preparation of MSCs, administration routes and methods, and recipient-related factors. This review briefly describes the current status and future prerequisites for an optimal strategy using bone-marrow-originated MSCs to treat ALS. We suggest mandatory factors in the optimized therapeutic strategy focused on advanced therapy medicinal products produced according to Good Manufacturing Practice, an optimal administration method, the selection of proper patients, and the importance of biomarkers.


Subject(s)
Amyotrophic Lateral Sclerosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Amyotrophic Lateral Sclerosis/therapy , Bone Marrow , Biomarkers , Mesenchymal Stem Cell Transplantation/methods
3.
Front Pharmacol ; 14: 1275749, 2023.
Article in English | MEDLINE | ID: mdl-38035024

ABSTRACT

Inhibition of angiogenesis is considered a promising therapeutic approach for cancer treatment. Our previous genetic research showed that the use of a cell-penetrating peptide to inhibit the pleckstrin homology (PH) domain of 3-phosphoinositide-dependent kinase 1 (PDK1) was a viable approach to suppress pathological angiogenesis. Herein, we synthesized and characterized a novel small molecule, CU05-1189, based on our prior study and present evidence for the first time that this compound possesses antiangiogenic properties both in vitro and in vivo. The computational analysis showed that CU05-1189 can interact with the PH domain of PDK1, and it significantly inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, invasion, and tube formation in human umbilical vein endothelial cells without apparent toxicity. Western blot analysis revealed that the Akt signaling pathway was specifically inhibited by CU05-1189 upon VEGF stimulation, without affecting other VEGF receptor 2 downstream molecules or cytosolic substrates of PDK1, by preventing translocation of PDK1 to the plasma membrane. We also found that CU05-1189 suppressed VEGF-mediated vascular network formation in a Matrigel plug assay. More importantly, CU05-1189 had a good pharmacokinetic profile with a bioavailability of 68%. These results led to the oral administration of CU05-1189, which resulted in reduced tumor microvessel density and growth in a xenograft mouse model. Taken together, our data suggest that CU05-1189 may have great potential and be a promising lead as a novel antiangiogenic agent for cancer treatment.

4.
Mol Neurobiol ; 60(8): 4761-4777, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37154887

ABSTRACT

Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15]. Despite an absence of significant differences in the expression of microglial homeostatic genes, ALS(R)-iMGs preferentially showed defective phagocytosis and an exaggerated pro-inflammatory response to LPS stimuli compared to ALS(S)-iMGs. Transcriptome analysis revealed that the perturbed phagocytosis seen in ALS(R)-iMGs was closely associated with decreased NCKAP1 (NCK-associated protein 1)-mediated abnormal actin polymerization. NCKAP1 overexpression was sufficient to rescue impaired phagocytosis in ALS(R)-iMGs. Post-hoc analysis indicated that decreased NCKAP1 expression in iMGs was correlated with the progression of ALS. Our data suggest that microglial NCKAP1 may be an alternative therapeutic target in rapidly progressive sporadic ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/metabolism , Microglia/metabolism , Phagocytosis/genetics , Monocytes/metabolism , Adaptor Proteins, Signal Transducing/metabolism
5.
J Inflamm (Lond) ; 20(1): 13, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024954

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a life-threatening condition that fundamentally results from inflammation and edema in the lung. There are no effective treatments available for clinical use. Previously, we found that as a leakage blocker CU06-1004 prevents endothelial barrier disruption and enhances endothelial cell survival under inflammatory conditions. In this study, we aimed to elucidate the effect of CU06-1004 in terms of prevention of inflammation and endothelial dysfunction in an ALI mouse model. METHODS: An ALI model was established that included intraperitoneal administration of LPS. Following LPS administration, survival rates and lung wet/dry ratios were assessed. Histological analysis was performed using hematoxylin and eosin staining. Scanning electron microscopy was used to examine alveolar and capillary morphology. Cytokines such as IL-1ß, IL-6, and TNF-α were analyzed using an ELISA assay of bronchoalveolar lavage fluid (BALF) and serum. Neutrophil infiltration was observed in BALF using Wright-Giemsa staining, and myeloperoxidase (MPO) activity was assessed. Pulmonary vascular leakage was confirmed using Evans-blue dye, and the expression of junctional proteins was evaluated using immunofluorescent staining. Expression of adhesion molecules was observed using immunofluorescence staining. NF-κB activation was determined using immunohistochemistry and western blot analysis. RESULTS: Survival rates and pulmonary edema were ameliorated with CU06-1004 treatment. Administration of CU06-1004 normalized histopathological changes induced by LPS, and alveolar-capillary wall thickening was reduced. Compared with the LPS-challenged group, after CU06-1004 treatment, the infiltration of immune cells was decreased in the BALF, and MPO activity in lung tissue was reduced. Similarly, in the CU06-1004 treatment group, pro-inflammatory cytokines were significantly inhibited in both BALF and serum. Evans-blue leakage was reduced, and the expression of junctional proteins was recovered in the CU06-1004 group. Adhesion molecules were downregulated and NF-κB activation was inhibited after CU06-1004 treatment. CONCLUSIONS: These results suggested that CU06-1004 had a therapeutic effect against LPS-induced ALI via alleviation of the inflammatory response and protection of vascular integrity.

6.
Fluids Barriers CNS ; 20(1): 9, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36726154

ABSTRACT

BACKGROUND: Age-related changes in the cerebrovasculature, including blood-brain barrier (BBB) disruption and vascular dementia, are emerging as potential risks for many neurodegenerative diseases. Therefore, the endothelial cells that constitute the cerebrovasculature may play key roles in preventing brain injury. Our previous study showed that CU06-1004, an endothelial cell dysfunction blocker, prevented vascular leakage, enhanced vascular integrity in ischemic reperfusion injury, and promoted the normalization of tumor vasculature. Here, we evaluated the effects of CU06-1004 on age-related cerebrovascular functional decline in the aged mouse brain. RESULTS: In this study, we investigated the protective effects of CU06-1004 against oxidative stress-induced damage in human brain microvascular endothelial cells (HBMECs). HBMECs were treated with hydrogen peroxide (H2O2) to establish an oxidative stress-induced model of cellular injury. Compared with H2O2 treatment alone, pretreatment of HBMECs with CU06-1004 considerably reduced oxidative stress-induced cytotoxicity, reactive oxygen species generation, senescence-associated ß-galactosidase activity, senescence marker expression, and the expression levels of inflammatory proteins. Based on the observed cytoprotective effects of CU06-1004 in HBMECs, we examined whether CU06-1004 displayed protective effects against cerebrovascular aging in mice. Long-term administration of CU06-1004 alleviated age-associated cerebral microvascular rarefaction and cerebrovascular senescence in the aged mouse brain. CU06-1004 supplementation also reduced the extravasation of plasma IgG by improving BBB integrity in the aged mouse brain, associated with reductions in neuronal injury. A series of behavioral tests also revealed improved motor and cognitive functions in aged mice that received long-term CU06-1004 administration. CONCLUSIONS: These findings suggest that CU06-1004 may represent a promising therapeutic approach for delaying age-related cerebrovascular impairment and improving cognitive function in old age.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Humans , Mice , Animals , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Hydrogen Peroxide/metabolism , Aging , Disease Models, Animal
7.
Allergy ; 78(5): 1333-1346, 2023 05.
Article in English | MEDLINE | ID: mdl-36789476

ABSTRACT

BACKGROUND: Over-release of the vasoactive peptide bradykinin (BK) due to mutation in the SERPING1 gene is the leading cause of hereditary angioedema (HAE). BK directly activates endothelial cells and increases vascular permeability by disrupting the endothelial barrier, leading to angioedema affecting face, lips, extremities, gastrointestinal tract, and larynx. Although various pharmacological treatment options for HAE became available during the last decade, they are presently limited and pose a major economic burden on patients. To identify additional therapeutic options for HAE, we evaluated the effect of CU06-1004, an endothelial dysfunction blocker, on BK-induced vascular hyperpermeability and the HAE murine model. METHODS: To investigate the effect of CU06-1004 on BK-induced vascular hyperpermeability in vivo, we pre-administrated WT mice with the drug and then induced vascular leakage through intravenous injection of BK and observed vascular alternation. Then, SERPING1 deficient mice were used for a HAE murine model. For an in vitro model, the HUVEC monolayer was pre-treated with CU06-1004 and then stimulated with BK. RESULTS: Bradykinin disrupted the endothelial barrier and formed interendothelial cell gaps, leading to hyperpermeability in vivo and in vitro. However, CU06-1004 treatment protected the endothelial barrier by suppressing Src and myosin light chain activation via BK and alleviated hyperpermeability. CONCLUSION: Our study shows that CU06-1004 oral administration significantly reduced vascular hyperpermeability in the HAE murine model by protecting the endothelial barrier function against BK stimulation. Therefore, protecting endothelium against BK with CU06-1004 could serve as a potential prophylactic/therapeutic approach for HAE patients.


Subject(s)
Angioedemas, Hereditary , Animals , Mice , Angioedemas, Hereditary/drug therapy , Angioedemas, Hereditary/genetics , Complement C1 Inhibitor Protein/genetics , Complement C1 Inhibitor Protein/pharmacology , Bradykinin/pharmacology , Endothelial Cells , Disease Models, Animal , Endothelium
8.
Eur J Pharmacol ; 939: 175427, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36509133

ABSTRACT

Retinal vascular diseases are the leading cause of blindness worldwide. These diseases have common disease mechanisms including vascular endothelial growth factor (VEGF) signaling, hypoxia, and inflammation. Treatment of these diseases with laser therapy, anti-VEGF injections and/or steroids has significantly improved clinical outcomes. However, these strategies do not address the underlying cause of the pathology and may have harmful side effects. Pathological processes that damage retinal vessels result in vascular occlusion and impairment of the barrier properties of retinal endothelial cells, leading to excessive vascular leakage. Therefore, a new therapeutic approach is needed for the treatment of retinal vascular disease. We were able to confirm that oral administration of CU06-1004, an endothelial dysfunction blocker, inhibited retinal vascular leakage induced by vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2). Interestingly, oral administration of CU06-1004 prevented excessive vascular leakage in the diabetic retinopathy model. In addition, CU06-1004 inhibited angiogenesis and confirmed vascular stabilization in the oxygen-induced retinopathy model and laser-induced CNV model. Taken together, CU06-1004 could be a potential therapeutic agent for the treatment of retinal vascular diseases.


Subject(s)
Diabetic Retinopathy , Retinal Diseases , Humans , Vascular Endothelial Growth Factor A/metabolism , Capillary Permeability , Endothelial Cells , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/complications , Retinal Diseases/metabolism , Vascular Endothelial Growth Factors/metabolism , Vascular Endothelial Growth Factors/pharmacology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/etiology , Administration, Oral
9.
Brain Commun ; 4(6): fcac299, 2022.
Article in English | MEDLINE | ID: mdl-36458208

ABSTRACT

Increasing genetic evidence supports the hypothesis that variants in the annexin A11 gene (ANXA11) contribute to amyotrophic lateral sclerosis pathogenesis. Therefore, we studied the clinical aspects of sporadic amyotrophic lateral sclerosis patients carrying ANXA11 variants. We also implemented functional experiments to verify the pathogenicity of the hotspot variants associated with amyotrophic lateral sclerosis-frontotemporal dementia. Korean patients diagnosed with amyotrophic lateral sclerosis (n = 882) underwent genetic evaluations through next-generation sequencing, which identified 16 ANXA11 variants in 26 patients. We analysed their clinical features, such as the age of onset, progression rate, initial symptoms and cognitive status. To evaluate the functional significance of the ANXA11 variants in amyotrophic lateral sclerosis-frontotemporal dementia pathology, we additionally utilized patient fibroblasts carrying frontotemporal dementia-linked ANXA11 variants (p.P36R and p.D40G) to perform a series of in vitro studies, including calcium imaging, stress granule dynamics and protein translation. The frequency of the pathogenic or likely pathogenic variants of ANXA11 was 0.3% and the frequency of variants classified as variants of unknown significance was 2.6%. The patients with variants in the low-complexity domain presented unique clinical features, including late-onset, a high prevalence of amyotrophic lateral sclerosis-frontotemporal dementia, a fast initial progression rate and a high tendency for bulbar-onset compared with patients carrying variants in the C-terminal repeated annexin homology domains. In addition, functional studies using amyotrophic lateral sclerosis-frontotemporal dementia patient fibroblasts revealed that the ANXA11 variants p.P36R and p.D40G impaired intracellular calcium homeostasis, stress granule disassembly and protein translation. This study suggests that the clinical manifestations of amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia spectrum patients with ANXA11 variants could be distinctively characterized depending upon the location of the variant.

10.
Exp Mol Med ; 54(1): 23-34, 2022 01.
Article in English | MEDLINE | ID: mdl-34997212

ABSTRACT

Ischemia-reperfusion (I/R) injury accelerates the cardiomyocytes (CMs) death by oxidative stress, and thereby deteriorates cardiac function. There has been a paradigm shift in the therapeutic perspective more towards the prevention or amelioration of damage caused by reperfusion. Cardiac microvascular endothelial cells (CMECs) are more vulnerable to reperfusion injury and play the crucial roles more than CMs in the pathological process of early I/R injury. In this study, we investigate that CU06-1004, as a vascular leakage blocker, can improve cardiac function by inhibiting CMEC's hyperpermeability and subsequently reducing the neutrophil's plugging and infiltration in infarcted hearts. CU06-1004 was delivered intravenously 5 min before reperfusion and the rats were randomly divided into three groups: (1) vehicle, (2) low-CU06-1004 (1 mg/kg, twice at 24 h intervals), and (3) high-CU06-1004 (5 mg/kg, once before reperfusion). CU06-1004 treatment reduced necrotic size and cardiac edema by enhancing vascular integrity, as demonstrated by the presence of intact junction proteins on CMECs and surrounding pericytes in early I/R injury. It also decreased the expression of vascular cell adhesion molecule 1 (VCAM-1) on CMECs, resulting in reduced infiltration of neutrophils and macrophages. Echocardiography showed that the CU06-1004 treatment significantly improved cardiac function compared with the vehicle group. Interestingly, single high-dose treatment with CU06-1004 provided a greater functional improvement than repetitive low-dose treatment until 8 weeks post I/R. These findings demonstrate that CU06-1004 enhances vascular integrity and improves cardiac function by preventing lethal myocardial I/R injury. It can provide a promising therapeutic option, as potential adjunctive therapy to current reperfusion strategies.


Subject(s)
Myocardial Reperfusion Injury , Animals , Edema/metabolism , Endothelial Cells/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Rats , Saponins , Ventricular Remodeling
11.
Phytomedicine ; 94: 153794, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34775362

ABSTRACT

BACKGROUND: Moutan radicis cortex (MRC) and Cinnamomi ramulus (CR) are commonly used in eastern Asian traditional medicine to treat various diseases including cerebrovascular and cardiovascular, and have wide spectrum of pharmacological activities. However, the effect against laser-induced choroidal neovascularization (CNV) of extract of MRC and CR (1:1) (MRCCR) has not yet been studied. PURPOSE: Our aim was to investigate the inhibitory effect of MRCCR on pathological CNV in laser-treated Brown-Norway (BN) rats. METHODS: MRCCR (60, 90 mg/kg) was orally administered twice per day for 15 days from the day of CNV formation in laser-treated BN rats. Effects of MRCCR or its constituents on cell migration, tube formation, hyperpermeability and phosphorylation of FAK/p38 MAPK were confirmed in humane retinal microvascular endothelial cells or human retinal pigment epithelial cells. RESULTS: MRCCR significantly reduced the CNV lesions areas and the extent of fluorescein leakage. MRCCR and its constituents such as ellagic acid, paeonol or gallic acid decreased cell migration, tube formation or hyperpermeability. MRCCR inhibited the phosphorylation of FAK and p38 MAPK. CONCLUSION: Combining the oral MRCCR and intravitreal injection of anti-VEGF medicine may result in a more potent therapeutic effect and consequently bring the reduction in eye injection numbers for patients with wet AMD.


Subject(s)
Choroidal Neovascularization , Animals , Choroidal Neovascularization/drug therapy , Disease Models, Animal , Endothelial Cells , Fluorescein Angiography , Humans , Lasers , Plant Extracts/pharmacology , Rats , Rats, Inbred BN , Vascular Endothelial Growth Factor A
12.
Front Pharmacol ; 12: 695009, 2021.
Article in English | MEDLINE | ID: mdl-34149436

ABSTRACT

Endothelial barrier integrity is important for vascular homeostasis, and hyperpermeability participates in the progression of many pathological states, such as diabetic retinopathy, ischemic stroke, chronic bowel disease, and inflammatory disease. Here, using drug repositioning, we discovered that primaquine diphosphate (PD), previously known as an antimalarial drug, was a potential blocker of vascular leakage. PD inhibited the linear pattern of vascular endothelial growth factors (VEGF)-induced disruption at the cell boundaries, blocked the formation of VEGF-induced actin stress fibers, and stabilized the cortactin actin rings in endothelial cells. PD significantly reduced leakage in the Miles assay and mouse model of streptozotocin (STZ)-induced diabetic retinopathy. Targeted prediction programs and deubiquitinating enzyme activity assays identified a potential mechanism of action for PD and demonstrated that this operates via ubiquitin specific protease 1 (USP1). USP1 inhibition demonstrated a conserved barrier function by inhibiting VEGF-induced leakage in endothelial permeability assays. Taken together, these findings suggest that PD could be used as a novel drug for vascular leakage by maintaining endothelial integrity.

13.
Nutrients ; 12(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171846

ABSTRACT

The gut microbiota has been suggested as an important factor in the pathogenic mechanisms of amyotrophic lateral sclerosis (ALS). This study aimed to investigate whether the intake of different kinds of dietary fiber was related to the disease progression rate (∆FS) and survival time. In total, 272 Korean sporadic ALS patients diagnosed according to the revised EI Escorial criteria were recruited starting in March 2011 and were followed until the occurrence of events or the end of September 2020. The events included percutaneous endoscopic gastrostomy, tracheostomy, and death. Dietary fiber intake was calculated based on a 24-h dietary recall and classified according to five major fiber-rich foods: vegetables, fruits, grains, legumes, and nuts/seeds. Among the total participants, the group with ∆FS values lower than the mean ∆FS (0.75) was noted in the highest tertiles of total and vegetable fiber intake. Participants in the highest tertile for vegetable fiber intake showed longer survival in the Kaplan-Meier analysis (p = 0.033). Notably, vegetable fiber intake was negatively correlated with pro-inflammatory cytokine (interleukin (IL)-1ß, IL-6, and monocyte chemoattractant protein-1) levels in the cerebrospinal fluid. This study showed that vegetable fiber intake could influence the disease progression rate and survival time. Further clinical trials are needed to confirm whether dietary fiber supplementation improves the prognosis of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/epidemiology , Dietary Fiber , Feeding Behavior , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Cytokines/cerebrospinal fluid , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Republic of Korea/epidemiology , Vegetables
14.
Sci Transl Med ; 12(566)2020 10 21.
Article in English | MEDLINE | ID: mdl-33087501

ABSTRACT

Dysregulation of calcium ion homeostasis and abnormal protein aggregation have been proposed as major pathogenic hallmarks underpinning selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Recently, mutations in annexin A11 (ANXA11), a gene encoding a Ca2+-dependent phospholipid-binding protein, have been identified in familial and sporadic ALS. However, the physiological and pathophysiological roles of ANXA11 remain unknown. Here, we report functions of ANXA11 related to intracellular Ca2+ homeostasis and stress granule dynamics. We analyzed the exome sequences of 500 Korean patients with sALS and identified nine ANXA11 variants in 13 patients. The amino-terminal variants p.G38R and p.D40G within the low-complexity domain of ANXA11 enhanced aggregation propensity, whereas the carboxyl-terminal ANX domain variants p.H390P and p.R456H altered Ca2+ responses. Furthermore, all four variants in ANXA11 underwent abnormal phase separation to form droplets with aggregates and led to the alteration of the biophysical properties of ANXA11. These functional defects caused by ALS-linked variants induced alterations in both intracellular Ca2+ homeostasis and stress granule disassembly. We also revealed that p.G228Lfs*29 reduced ANXA11 expression and impaired Ca2+ homeostasis, as caused by missense variants. Ca2+-dependent interaction and coaggregation between ANXA11 and ALS-causative RNA-binding proteins, FUS and hnRNPA1, were observed in motor neuron cells and brain from a patient with ALS-FUS. The expression of ALS-linked ANXA11 variants in motor neuron cells caused cytoplasmic sequestration of endogenous FUS and triggered neuronal apoptosis. Together, our findings suggest that disease-associated ANXA11 mutations can contribute to ALS pathogenesis through toxic gain-of-function mechanisms involving abnormal protein aggregation.


Subject(s)
Amyotrophic Lateral Sclerosis , Annexins/genetics , Amyotrophic Lateral Sclerosis/genetics , Calcium , Homeostasis , Humans , Mutation/genetics
15.
Front Pharmacol ; 11: 571266, 2020.
Article in English | MEDLINE | ID: mdl-33041812

ABSTRACT

Inflammatory bowel disease is an autoimmune disease that causes chronic inflammation of the gastrointestinal tract. Endothelial dysfunction, defined by a reduced endothelial barrier and an increase in the expression of adhesion molecules, is part of the pathology of inflammatory bowel disease. In this study, we assessed the therapeutic effect of CU06-1004, an endothelial dysfunction blocker that reduces vascular hyperpermeability and inflammation in a mouse model of colitis. Acute colitis was induced in mice using 3% (w/v) dextran sodium sulfate added to their drinking water for 7 days. Twenty-four hours after the addition of dextran sodium sulfate, either mesalazine or CU06-1004 was administered orally each day. Administration of CU06-1004 significantly reduced the clinical manifestations (weight loss, diarrhea, and bloody stool) and histological changes (epithelium loss, inflammatory cell infiltration, and crypt destruction) induced by dextran sodium sulfate. Proinflammatory cytokines were also reduced, indicating that inflammation was ameliorated. From a vascular perspective, CU06-1004 reduced interrupted and tortuous vessels, enhanced junction protein expression, and reduced inflammatory adhesion molecules, indicating a broad improvement of endothelial dysfunction. Endothelial protection induced epithelial barrier restoration and decreased epithelial inflammation. Blocking endothelial dysfunction with CU06-1004 significantly ameliorated the progression of inflammatory bowel disease. Therefore, CU06-1004 may represent a potential therapeutic agent for the treatment of inflammatory bowel disease as well as other inflammatory diseases.

16.
Front Immunol ; 11: 620166, 2020.
Article in English | MEDLINE | ID: mdl-33584714

ABSTRACT

Blocking the immune evasion mechanism of tumor cells has become an attractive means for treating cancers. However, the usage of a drug such as nivolumab (αPD-1), which blocks programmed cell death protein 1 (PD-1), turned out to be only effective against certain types of cancer. Especially, vascular abnormal structures of which deter delivery route by leakage and cause the poor perfusion were considered to be environment unfavorable to T cells and immune checkpoint blockade (ICB) delivery within the tumor microenvironment (TME). Herein, we report stabilization of tumor blood vessels by endothelial dysfunctional blocker CU06-1004, which modified the TME and showed synergistic effects with immunotherapy anti-PD-1 antibody. CU06-1004 combination therapy consistently prolonged the survival of tumor-bearing mice by decreasing tumor growth. T-cell infiltration increased in the tumors of the combination group, with cytotoxic CD8+ T cell activity within the tumor parenchyma upregulated compared with anti-PD-1 monotherapy. Tumor inhibition was associated with reduced hypoxia and reduced vessel density in the central region of the tumor. These effects correlated significantly with enhanced expression of IFN gamma and PD-L1 in tumors. Taken together, our findings suggest that CU06-1004 is a potential candidate drug capable of improving therapeutic efficacy of anti-PD-1 through beneficial changes in the TME.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Endothelium, Vascular/drug effects , Immune Checkpoint Inhibitors/pharmacokinetics , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/drug effects , Saponins/pharmacology , T-Lymphocytes, Cytotoxic/drug effects , Tumor Microenvironment/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Apoptosis/drug effects , Capillary Permeability/drug effects , Carcinoma, Lewis Lung/blood supply , Carcinoma, Lewis Lung/drug therapy , Cell Hypoxia/drug effects , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Drug Screening Assays, Antitumor , Drug Synergism , Endothelium, Vascular/immunology , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/physiopathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Saponins/administration & dosage , Saponins/therapeutic use , T-Lymphocytes, Cytotoxic/immunology , Tumor Burden/drug effects , Tumor Escape/drug effects
17.
Exp Mol Med ; 51(11): 1-11, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723119

ABSTRACT

MicroRNAs (miRs) are crucial regulators of vascular endothelial cell (EC) functions, including migration, proliferation, and survival. However, the role of most miRs in ECs remains unknown. Using RNA sequencing analysis, we found that miR-148a/b-3p expression was significantly downregulated during the differentiation of umbilical cord blood mononuclear cells into outgrowing ECs and that decreased miR-148a/b-3p levels were closely related to EC behavior. Overexpression of miR-148a/b-3p in ECs significantly reduced migration, filamentous actin remodeling, and angiogenic sprouting. Intriguingly, the effects of decreased miR-148a/b-3p levels were augmented by treatment with vascular endothelial growth factor (VEGF). Importantly, we found that miR-148a/b-3p directly regulated neuropilin-1 (NRP1) expression by binding to its 3'-untranslated region. In addition, because NRP1 is the coreceptor for VEGF receptor 2 (VEGFR2), overexpression of miR-148a/b-3p inhibited VEGF-induced activation of VEGFR2 and inhibited its downstream pathways, as indicated by changes to phosphorylated focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase. Collectively, our results demonstrate that miR-148a/b-3p is a direct transcriptional regulator of NRP1 that mediates antiangiogenic pathways. These data suggest that miR-148a/b-3p is a therapeutic candidate for overcoming EC dysfunction and angiogenic disorders, including ischemia, retinopathy, and tumor vascularization.


Subject(s)
Cell Movement/physiology , Endothelial Cells/metabolism , MicroRNAs/metabolism , Neuropilin-1/metabolism , 3' Untranslated Regions/genetics , 3' Untranslated Regions/physiology , Blotting, Western , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Movement/genetics , Cell Proliferation/genetics , Cell Proliferation/physiology , Computational Biology , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Human Umbilical Vein Endothelial Cells , Humans , MicroRNAs/genetics , Neuropilin-1/genetics , Sequence Analysis, RNA , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
18.
FASEB J ; 33(9): 9842-9857, 2019 09.
Article in English | MEDLINE | ID: mdl-31170000

ABSTRACT

Angiogenesis depends on VEGF-mediated signaling. However, the regulatory mechanisms and functions of individual VEGF receptor 2 (VEGFR2) phosphorylation sites remain unclear. Here, we report that synaptic adhesion-like molecule 4 (SALM4) regulates a specific VEGFR2 phosphorylation site. SALM4 silencing in HUVECs and Salm4 knockout (KO) in lung endothelial cells (ECs) of Salm4-/- mice suppressed phosphorylation of VEGFR2 tyrosine (Y) 1175 (Y1173 in mice) and downstream signaling upon VEGF-A stimulation. However, VEGFR2 phosphorylation at Y951 (Y949 in mice) and Y1214 (Y1212 in mice) remained unchanged. Knockdown and KO of SALM4 inhibited VEGF-A-induced angiogenic functions of ECs. SALM4 depletion reduced endothelial leakage, sprouting, and migratory activities. Furthermore, in an ischemia and reperfusion (I/R) model, brain injury was attenuated in Salm4-/- mice compared with wild-type (WT) mice. In brain lysates after I/R, VEGFR2 phosphorylation at Y949, Y1173, and Y1212 were induced in WT brains, but only Y1173 phosphorylation of VEGFR2 was reduced in Salm4-/- brains. Taken together, our results demonstrate that SALM4 specifically regulates VEGFR2 phosphorylation at Y1175 (Y1173 in mice), thereby fine-tuning VEGF signaling in ECs.-Kim, D. Y., Park, J. A., Kim, Y., Noh, M., Park, S., Lie, E., Kim, E., Kim, Y.-M., Kwon, Y.-G. SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Amino Acid Sequence , Animals , Cell Adhesion Molecules, Neuronal/genetics , Fetal Blood/cytology , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Leukocytes, Mononuclear/physiology , Mice , Mice, Knockout , Neovascularization, Pathologic , Neovascularization, Physiologic , Phosphorylation , RNA, Messenger , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
Ann Neurol ; 84(3): 361-373, 2018 09.
Article in English | MEDLINE | ID: mdl-30048006

ABSTRACT

OBJECTIVE: To assess the safety and efficacy of 2 repeated intrathecal injections of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in amyotrophic lateral sclerosis (ALS). METHODS: In a phase 2 randomized controlled trial (NCT01363401), 64 participants with ALS were randomly assigned treatments (1:1) of riluzole alone (control group, n = 31) or combined with 2 BM-MSC injections (MSC group, n = 33). Safety was assessed based on the occurrence of adverse events. The primary efficacy outcome was changes in Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) score from baseline to 4 and 6 months postinjection. Post hoc analysis includes investigation of cerebrospinal fluid biomarkers and long-term survival analysis. RESULTS: Safety rating showed no groupwise difference with absence of serious treatment-related adverse events. Mean changes in ALSFRS-R scores from baseline to 4 and 6 months postinjection were reduced in the MSC group compared with the control group (4 months: 2.98, 95% confidence interval [CI] = 1.48-4.47, p < 0.001; 6 months: 3.38, 95% CI = 1.23-5.54, p = 0.003). The MSC group showed decreased proinflammatory and increased anti-inflammatory cytokines. In good responders, transforming growth factor ß1 significantly showed inverse correlation with monocyte chemoattractant protein-1. There was no significant difference in long-term survival between groups. INTERPRETATION: Repeated intrathecal injections of BM-MSCs demonstrated a possible clinical benefit lasting at least 6 months, with safety, in ALS patients. A plausible action mechanism is that BM-MSCs mediate switching from pro- to anti-inflammatory conditions. A future randomized, double-blind, large-scale phase 3 clinical trial with additional BM-MSC treatments is required to evaluate long-term efficacy and safety. Ann Neurol 2018;84:361-373.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Adult , Aged , Biomarkers/metabolism , Cell- and Tissue-Based Therapy/methods , Cytokines/metabolism , Double-Blind Method , Female , Humans , Male , Mesenchymal Stem Cell Transplantation/methods , Middle Aged
20.
Int Immunopharmacol ; 60: 104-110, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29709770

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) are thought to play a modulatory role in immune responses and to improve outcomes after ischemic stroke. Thus, various strategies for increasing Tregs in animal models of ischemic stroke have yielded successful results. The aim of this study was to examine the potential effect of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor on Treg proportion in stroke patients. METHODS: Peripheral blood samples were collected from 12 ischemic stroke patients (within 72 h of stroke onset) and 5 healthy control subjects. Flow cytometry analyses and quantitative reverse transcription polymerase chain reactions (qRT-PCR) were performed on peripheral blood mononuclear cells (PBMCs) before and after treating them with PARP-1 inhibitor (3-AB; JPI-289 1 µm, JPI-289 10 µm) for 24 h. RESULTS: Treg proportions were significantly higher in healthy controls (median 2.8%, IQR 2.6-5.0%) than ischemic stroke patients (median 1.6%, IQR 1.25-2.2%) (p < 0.001). In the latter, Treg proportions were positively correlated with age (r = 0.595, p = 0.041), but not with infarct volume (r = 0.367, p = 0.241). After PARP-1 inhibitor treatment, Treg proportions among PBMCs increased in response to high dose (10 µm) JPI-289 (median 2.3%, IQR 2.0-2.9%) as did Treg-associated transcription factors such as FoxP3 and CTLA-4 mRNA. PARP-1 inhibitor treatment also decreased pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-17) and increased anti-inflammatory cytokines (IL-4, IL-10, and TGF-ß1). CONCLUSION: Treg proportions are reduced in ischemic stroke patients and increased by treatment with high-dose PARP-1 inhibitor JPI-289. The PARP-1 inhibitor also had a possible anti-inflammatory effect on cytokine levels, and may ameliorate the outcome of ischemic stroke by up-regulating Tregs.


Subject(s)
Brain Ischemia/immunology , Naphthyridines/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Stroke/immunology , T-Lymphocytes, Regulatory/drug effects , Adult , Aged , Aged, 80 and over , Brain Ischemia/drug therapy , Brain Ischemia/genetics , CTLA-4 Antigen/genetics , Cytokines/genetics , Female , Forkhead Transcription Factors/genetics , GATA3 Transcription Factor/genetics , Humans , Male , Middle Aged , Naphthyridines/therapeutic use , Stroke/drug therapy , Stroke/genetics , T-Box Domain Proteins/genetics , T-Lymphocytes, Regulatory/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...