Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 4(7): eaat3151, 2018 07.
Article in English | MEDLINE | ID: mdl-30027118

ABSTRACT

The origin of the synergistic catalytic effect between metal catalysts and reducible oxides has been debated for decades. Clarification of this effect, namely, the strong metal-support interaction (SMSI), requires an understanding of the geometric and electronic structures of metal-metal oxide interfaces under operando conditions. We show that the inherent lattice mismatch of bimetallic materials selectively creates surface segregation of subsurface metal atoms. Interfacial metal-metal oxide nanostructures are then formed under chemical reaction environments at ambient pressure, which thus increases the catalytic activity for the CO oxidation reaction. Our in situ surface characterizations using ambient-pressure scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy exhibit (i) a Pt-skin layer on the Pt-Ni alloyed surface under ultrahigh vacuum, (ii) selective Ni segregation followed by the formation of NiO1-x clusters under oxygen gas, and (iii) the coexistence of NiO1-x clusters on the Pt-skin during the CO oxidation reaction. The formation of interfacial Pt-NiO1-x nanostructures is responsible for a highly efficient step in the CO oxidation reaction. Density functional theory calculations of the Pt3Ni(111) surface demonstrate that a CO molecule adsorbed on an exposed Pt atom with an interfacial oxygen from a segregated NiO1-x cluster has a low surface energy barrier of 0.37 eV, compared with 0.86 eV for the Pt(111) surface.

2.
J Am Chem Soc ; 138(4): 1110-3, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26784145

ABSTRACT

Carbon monoxide (CO) is one of the most-studied molecules among the many modern industrial chemical reactions available. Following the Langmuir-Hinshelwood mechanism, CO conversion starts with adsorption on a catalyst surface, which is a crucially important stage in the kinetics of the catalytic reaction. Stepped surfaces show enhanced catalytic activity because they, by nature, have dense active sites. Recently, it was found that surface-sensitive adsorption of CO is strongly related to surface restructuring via roughening of a stepped surface. In this scanning tunneling microscopy study, we observed the thermal evolution of surface restructuring on a representative stepped platinum catalyst, Pt(557). CO adsorption at 1.4 mbar CO causes the formation of a broken-step morphology, as well as CO-induced triangular Pt clusters that exhibit a reversible disordered-ordered transition. Thermal instability of the CO-induced platinum clusters on the stepped surface was observed, which is associated with the reorganization of the repulsive CO-CO interactions at elevated temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...