Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 22(3-4): 349-62, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26824782

ABSTRACT

In conventional stem cell transplantation therapies for ischemic limb diseases, stem cells are generally transplanted into the ischemic region (IR), and most of the transplanted cells undergo hypoxia-mediated cell death. Due to massive cell death, the therapeutic efficacy is reduced and a high dose of stem cells is necessitated for the therapies. In this study, we investigated whether the therapeutic efficacy can be improved and the cell dosage can be reduced in the therapy for limb ischemia simply by modifying the stem cell injection site to a site where cell engraftment is improved and blood vessel sprouting is efficiently stimulated. Human mesenchymal stem cells (hMSCs) cultured under hypoxic condition, which simulates cells transplanted to IR, underwent extensive cell death in vitro. Importantly, cell death was significantly attenuated when hMSCs adhered first under normoxic condition for 24 h and then were exposed to hypoxic condition, which simulates cells transplanted to the border zone (BZ) in the upper thigh and migrated to IR. hMSCs, at doses of 2 × 10(5) or 2 × 10(6) cells, were injected into the IR or BZ of 5-week-old female athymic mice after ischemic hindlimb induction. Compared with human mesenchymal stem cell (hMSC) transplantation to the IR of mouse ischemic limbs, transplantation to the BZ significantly enhanced cell engraftment and paracrine factor secretion, which effectively stimulated vessel sprouting, enhanced blood perfusion in IR, and enabled the cell dosage reduction. Therefore, modification of the stem cell transplantation site would improve the current stem cell therapies for ischemic limb diseases in terms of cell dosage reduction and therapeutic efficacy enhancement.


Subject(s)
Hindlimb/blood supply , Ischemia/metabolism , Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Animals , Female , Heterografts , Humans , Mice , Mice, Nude
2.
Biomaterials ; 55: 33-43, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25934450

ABSTRACT

At high concentrations, manganese (Mn) promotes cellular neurodevelopment but causes toxicity. Here, we report that Mn ion at high concentrations can be delivered to pheochromocytoma 12 (PC12) cells using gold nanoparticles (AuNPs) to enhance cellular neurodevelopment without toxicity. Mn(2+) release from AuNPs was designed to be pH-responsive so that low pH condition of the cell endosomes can trigger in situ release of Mn(2+) from AuNPs after cellular uptake of Mn-incorporated AuNPs (MnAuNPs). Due to the differences in reduction potentials of Mn and Au, only Mn ionized and released while Au remained intact when MnAuNPs were uptaken by cells. Compared to PC12 cells treated with a high concentration of free Mn(2+), PC12 cells treated with an equal concentration of MnAuNPs resulted in significantly enhanced cellular neurodevelopment with decreased apoptosis and necrosis. Treatment with a high concentration of free Mn(2+) led to an abrupt consumption of a large amount of ATP for the intracellular transport of Mn(2+) through the ion channel of the cell membrane and to mitochondrial damage caused by the high intracellular concentration of Mn(2+), both of which resulted in cell necrosis and apoptosis. In contrast, MnAuNP-treated cells consumed much smaller amount of ATP for the intracellular transport of MnAuNPs by endocytosis and showed pH-triggered in situ release of Mn(2+) from the MnAuNPs in the endosomes of the cells, both of which prevented the cell death caused by ATP depletion and mitochondrial damage. To our knowledge, this is the first report on the use of AuNPs as a vehicle for pH-responsive, intracellular delivery of metal ion, which may open a new window for drug delivery and clinical therapy.


Subject(s)
Cell Differentiation , Drug Delivery Systems , Gold/chemistry , Manganese/chemistry , Metal Nanoparticles/chemistry , Neurons/cytology , Adenosine Triphosphate/chemistry , Animals , Apoptosis , Cell Membrane/metabolism , Endocytosis , Hydrogen-Ion Concentration , Ions , Lactic Acid/chemistry , Mitochondria/metabolism , Mitochondria/pathology , Necrosis , Neurons/drug effects , PC12 Cells/cytology , PC12 Cells/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...