Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 9: 156, 2020.
Article in English | MEDLINE | ID: mdl-32963768

ABSTRACT

Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging.

2.
Sci Rep ; 6: 36094, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782220

ABSTRACT

We report improvement of terahertz (THz) wave radiation for Si-based catalyst-free InAs nanowires (NWs) by simple dipping into tap water (DTW). In addition, the possibility of using InAs NWs as a cost-effective method for biomedical applications is discussed by comparison to bulk InAs. The peak-to-peak current signals (PPCSs) of InAs NWs measured from THz time-domain spectroscopy increased with increasing NW height. For example, the PPCS of 10 µm-long InAs NWs was 2.86 times stronger than that of 2.1 µm-long NWs. The THz spectra of the InAs NWs obtained by applying a fast Fourier transformation to the current signals showed a main frequency of 0.5 THz, which can be applied to a variety of medical imaging systems. After the DTW process, structural variation was not observed for 2.1 µm-long InAs NWs. However, the top region of several InAs NWs with heights of 4.6 and 5.8 µm merged into a conical structure. InAs NWs with a height of 10 µm resulted in a bundle feature forming above the conical shape, where the length of bundle region was 4 µm. After the DTW process, the PPCS for 10 µm-long InAs NWs increased by 15 percent compared to that of the as-grown case.


Subject(s)
Nanowires , Terahertz Radiation , Terahertz Spectroscopy/methods , Water , Terahertz Spectroscopy/instrumentation
3.
Biomed Opt Express ; 7(4): 1201-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27446647

ABSTRACT

We designed and fabricated a novel terahertz (THz) otoscope to help physicians to diagnose otitis media (OM) with both THz diagnostics and conventional optical diagnostics. We verified the potential of this tool for diagnosing OM using mouse skin tissue and a human tympanic membrane samples prior to clinical application.

4.
Sci Rep ; 5: 16652, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26581781

ABSTRACT

We report structural and electrical properties of catalyst-free Si-doped InAs nanowires (NWs) formed on Si(111) substrates. The average diameter of Si-doped InAs NWs was almost similar to that of undoped NWs with a slight increase in height. In the previous works, the shape and size of InAs NWs formed on metallic catalysts or patterned structures were significantly changed by introducing dopants. Even though the external shape and size of the Si-doped NWs in this work were not changed, crystal structures inside the NWs were significantly changed. For the undoped InAs NWs, both zincblende (ZB) and wurzite (WZ) structures were observed in transmission-electron microscope images, where the portion of WZ structure was estimated to be more than 30%. However, only ZB was observed with an increase in stacking fault (SF) for the Si-doped NWs. The undoped and Si-doped InAs NWs were used as channels of four-point electrical measurements with Al/Ni electrodes to investigate electrical properties. The resistivity calculated from the current-voltage curve of a Si-doped InAs NW showed 1.32 × 10(-3) Ωcm, which was dramatically decreased from 10.14 × 10(-3) Ωcm for the undoped InAs NW. A relatively low resistivity of catalyst-free Si-doped InAs NWs was achieved without significant change in structural dimensions.

5.
Biomed Opt Express ; 6(4): 1398-406, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25909023

ABSTRACT

We have investigated the feasibility of THz time-domain reflectometry for the discrimination of human early gastric cancer (EGC) from the normal gastric region. Eight fresh EGC tissues, which were resected by endoscopic submucosal dissection, were studied. Of them, six lesions were well discriminated on THz images and the regions well correlated with tumor regions on pathologically mapped images. Four THz parameters could be suggested for quantitative discrimination of EGCs.

6.
Biomed Opt Express ; 5(8): 2837-42, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25136506

ABSTRACT

We demonstrated that tumors in freshly excised whole brain tissue could be differentiated clearly from normal brain tissue using a reflection-type terahertz (THz) imaging system. THz binary images of brain tissues with tumors indicated that the tumor boundaries in the THz images corresponded well to those in visible images. Grey and white-matter regions were distinguishable owing to the different distribution of myelin in the brain tissue. THz images corresponded closely with magnetic resonance imaging (MRI) results. The MRI and hematoxylin and eosin-stained microscopic images were investigated to account for the intensity differences in the THz images for fresh and paraffin-embedded brain tissue. Our results indicated that the THz signals corresponded to the cell density when water was removed. Thus, THz imaging could be used as a tool for label-free and real-time imaging of brain tumors, which would be helpful for physicians to determine tumor margins during brain surgery.

7.
Biomed Opt Express ; 5(12): 4162-70, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25574429

ABSTRACT

We have investigated basic properties of normal gastrointestinal (GI) tract tissues, including glandular stomach (GS), fore stomach (FS), large intestine (LI), small intestine (SI), and esophagus (ESO), from a rat model using terahertz (THz) reflection imaging and spectroscopy. The THz images collected from stratified squamous epithelia (SSE) of FS and ESO show a lower peak-to-peak value compared to those from columnar epithelia (CE) of GS, LI, or SI because the SSE contains less water than CE. The refractive index and absorption coefficient of FS were less than those of GS or LI, both having values similar to those of water. Additionally, we report internal reflection THz signals from ESO, although we were unable to determine the exact interface for this internal reflection.

8.
J Nanosci Nanotechnol ; 14(12): 9623-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971109

ABSTRACT

We report the influences of a dot-in-a-well structure with a thin GaAs layer and the thickness of a waveguide (WG) on the lasing characteristics of InAs quantum dots (QDs) based on InP. The QD laser diodes (QDLDs) consist of seven-stacked InAs QDs separated by a 10 nm-thick InGaAsP (1.15 µm, 1.15Q-InGaAsP) layer, which is further sandwiched by a 800 nm-thick 1.15Q-lnGaAsP WG (reference QDLD). For comparison, the InAs QDs were inserted into the InGaAsP (1.35 µm, 1.35Q-InGaAsP) quantum well embedded in the 1.15Q-InGaAsP matrix at the active layer. And a 2 monolayer (ML)-thick GaAs layer was additionally introduced right before the QD layer (GDWELL-LDs). Lasing emission from the reference QDLD with only the 1.15Q-InGaAsP structure was not observed at room temperature (RT). However, the lasing emission from the GDWELL-LDs was clearly observed at the wavelength of 1.46 µm at RT under continuous-wave (CW) mode. The threshold current density of the GDWELL-LD with the 800 nm-thick InGaAsP WG was measured to be 830 A/cm2, which was lower than that of the GDWELL-LD with the 200 nm-thick WG (900 A/cm2). Also, the slope efficiency of the GDWELL-LD was significantly improved with increasing thickness of the InGaAsP WG.


Subject(s)
Arsenicals/chemistry , Indium/chemistry , Quantum Dots
9.
Opt Lett ; 38(24): 5466-9, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24343018

ABSTRACT

A novel buried photomixer for integrated photonic terahertz devices is proposed. The active region of the mesa-structure InGaAs photomixer is buried in an InP layer grown by metalorganic chemical vapor deposition (MOCVD) to improve heat dissipation, which is an important problem for terahertz photomixers. The proposed photomixer shows good thermal properties compared to a conventional planar-type photomixer. The MOCVD regrowth process indicates the possibility for THz photomixers to be integrated monolithically with conventional photonic devices.

10.
J Nanosci Nanotechnol ; 11(7): 6504-9, 2011 Jul.
Article in English | MEDLINE | ID: mdl-22121745

ABSTRACT

The energy states of InAs/GaAs self-assembled quantum dots (QDs) were analyzed by comparing between two QD systems with different QD sizes. The electrical properties of the QD systems were investigated via capacitance-voltage measurements and capacitance transient spectroscopy (also known as deep-level transient spectroscopy) with selective carrier injection and extraction which can be achieved with very small pulse amplitude under bias variation. For the large QDs, several energy states were found with the use of selective carrier injection and extraction. The thermal-activation energies obtained from the capacitance transient spectra of the large QDs were distributed from 70 to 600 meV. This energy distribution was originated from the quantized states of the individual QDs and the size distribution of the QDs. The spectra of the small QDs showed a well-defined energy state of E(c) - 132 meV. From these results, it was estimated that two to four electrons fill a single QD under the proper measurement bias of 0.2 V pulse.

11.
Opt Express ; 19(16): 15397-403, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21934903

ABSTRACT

We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-µm range.


Subject(s)
Terahertz Spectroscopy/methods , Equipment Design , Humans , Lasers , Lasers, Semiconductor , Light , Materials Testing , Microscopy, Electron, Scanning/methods , Semiconductors , Terahertz Radiation , Time Factors
12.
Opt Lett ; 36(16): 3094-6, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21847171

ABSTRACT

The successful demonstration of an optical fiber-coupled terahertz time-domain spectroscopy (THz-TDS) system is described in this study. The terahertz output power of the emitter with two optical band rejection filters was 132 nW, which is an improvement of 70% over the output power without any filters. This improvement is due to the suppression of an optical modulated signal that is reverse-generated when an alternating current bias exceeding a certain threshold is applied to the emitter. Under the optimal alignment conditions, the terahertz detector in a fiber-coupled THz-TDS system clearly measured water vapor dips in the free space.

13.
Nat Commun ; 2: 286, 2011.
Article in English | MEDLINE | ID: mdl-21505442

ABSTRACT

In the past few years, there has been increasing interest in surface plasmon-polaritons, as a result of the strong near-field enhancement of the electric fields at a metal-dielectric interface. Here we show the first demonstration of a monolithically integrated plasmonic focal plane array (FPA) in the mid-infrared region, using a metal with a two-dimensional hole array on top of an intersubband quantum-dots-in-a-well (DWELL) heterostructure FPA coupled to a read-out integrated circuit. Excellent infrared imagery was obtained with over a 160% increase in the ratio of the signal voltage (V(s)) to the noise voltage (V(n)) of the DWELL camera at the resonant wavelength of λ=6.1 µm. This demonstration paves the way for the development of a new generation of pixel-level spectropolarimetric imagers, which will enable bio-inspired (for example, colour vision) infrared sensors with enhanced detectivity (D) or higher operating temperatures.


Subject(s)
Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , Infrared Rays , Quantum Dots , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...