Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microcirculation ; 28(7): e12720, 2021 10.
Article in English | MEDLINE | ID: mdl-34152668

ABSTRACT

OBJECTIVES: The ability to regulate skeletal blood flow is critical for the maintenance of bone. The myogenic response is essential for regulating tissue blood flow. Myogenic responsiveness in bone marrow arterioles has not yet been determined. Furthermore, the literature is disparate regarding intramedullary pressures (IMP) within bone. The purposes of this study were to (1) determine whether bone marrow arterioles have myogenic activity and (2) assess if the autoregulatory zone corresponds with IMP. Also, this study provides detailed methodology on dissecting and isolating bone marrow arterioles for functional assessment. METHODS: Experiment 1: Femoral shafts of female Long Evans rats were catheterized to assess in vivo IMP. Experiment 2: Bone marrow arterioles from female Long Evans rats were cannulated. Active and passive myogenic responses were determined. RESULTS: In vivo intramedullary pressure averaged 32 ± 3 mmHg, intramedullary pulse pressure averaged 5.28 ± 0.03 mmHg, and the mean maximal diameter and wall thickness of the bone marrow arterioles were 96 ± 7 µm and 18 ± 2 µm, respectively. An active myogenic response was observed and differed (p < .001) from the passive curve. CONCLUSION: Bone marrow arterioles have myogenic responsiveness and the autoregulatory zone corresponded with the range of IMP (15-51 mmHg) within the femoral diaphysis of conscious animals.


Subject(s)
Bone Marrow , Vasoconstriction , Animals , Arterioles/physiology , Blood Pressure , Female , Homeostasis , Muscle, Smooth, Vascular/physiology , Rats , Rats, Long-Evans , Vasoconstriction/physiology
2.
Micromachines (Basel) ; 11(3)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32182976

ABSTRACT

Modulations of fluid flow inside the bone intramedullary cavity has been found to stimulate bone cellular activities and augment bone growth. However, study on the efficacy of the fluid modulation has been limited to external syringe pumps connected to the bone intramedullary cavity through the skin tubing. We report an implantable magnetic microfluidic pump which is suitable for in vivo studies in rodents. A compact microfluidic pump (22 mm diameter, 5 mm in thickness) with NdFeB magnets was fabricated in polydimethylsiloxane (PDMS) using a set of stainless-steel molds. An external actuator with a larger magnet was used to wirelessly actuate the magnetic microfluidic pump. The characterization of the static pressure of the microfluidic pump as a function of size of magnets was assessed. The dynamic pressure of the pump was also characterized to estimate the output of the pump. The magnetic microfluidic pump was implanted into the back of a Fischer-344 rat and connected to the intramedullary cavity of the femur using a tube. On-demand wireless magnetic operation using an actuator outside of the body was found to induce pressure modulation of up to 38 mmHg inside the femoral intramedullary cavity of the rat.

SELECTION OF CITATIONS
SEARCH DETAIL