Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 127(26): 267203, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35029465

ABSTRACT

Topological magnonic materials have attracted much interest because of the potential for dissipationless spintronic applications. Pyrochlore iridates are theoretically regarded as good candidates for designing topological magnon bands. However, experimental identification of topological magnon bands in pyrochlore iridates remains elusive. We explored this possibility in Y_{2}Ir_{2}O_{7} using Raman spectroscopy to measure both the single-magnon excitations and anomalous phonon shifts. From the single-magnon energies and tight-binding model calculations concerning the phonons, we determined the key parameters in the spin Hamiltonian. These confirm that Y_{2}Ir_{2}O_{7} hosts a nontrivial magnon band topology distinct from other pyrochlore iridate compounds. Our work demonstrates that pyrochlore iridates constitute a system in which the magnon band topology can be tailored and that Raman spectroscopy is a powerful technique to explore magnon band topology.

2.
Sci Rep ; 9(1): 15827, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31676832

ABSTRACT

Spin-polarized supercurrents can be generated with magnetic inhomogeneity at a ferromagnet/spin-singlet-superconductor interface. In such systems, complex magnetic inhomogeneity makes it difficult to functionalise the spin-polarized supercurrents. However, spin-polarized supercurrents in ferromagnet/spin-triplet-superconductor junctions can be controlled by the angle between magnetization and spin of Copper pairs (d-vector), that can effectively be utilized in developing of a field of research known as superconducting spintronics. Recently, we found induction of spin-triplet correlation into a ferromagnet SrRuO3 epitaxially deposited on a spin-triplet superconductor Sr2RuO4, without any electronic spin-flip scattering. Here, we present systematic magnetic field dependence of the proximity effect in Au/SrRuO3/Sr2RuO4 junctions. It is found that induced triplet correlations exhibit strongly anisotropic field response. Such behaviour is attributed to the rotation of the d-vector of Sr2RuO4. This anisotropic behaviour is in contrast with the vortex dynamic. Our results will stimulate study of interaction between ferromagnetism and unconventional superconductivity.

3.
Phys Rev Lett ; 120(13): 136402, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694193

ABSTRACT

Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS_{3}, a van der Waals antiferromagnet, from studies of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption, photoemission spectroscopy, and density functional calculations. NiPS_{3} displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission, and optical spectra support a self-doped ground state in NiPS_{3}. Our work demonstrates that layered transition-metal trichalcogenide magnets are useful candidates for the study of correlated-electron physics in two-dimensional magnetic materials.

4.
Phys Rev Lett ; 118(11): 117201, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28368646

ABSTRACT

Spin-phonon coupling mediated by single ion anisotropy was investigated using optical spectroscopy and first-principles calculations in the all-in-all-out pyrochlore magnet Cd_{2}Os_{2}O_{7}. Clear anomalies were observed in both the phonon frequencies and linewidths at the magnetic ordering temperature. The renormalization of the phonon modes was exceptionally large, signifying the presence of an unconventional magnetoelastic term from large spin-orbit coupling. In addition, the relative phonon frequency shifts show a strong correlation with the modulation of noncubic crystal field by the corresponding lattice distortion. Our observation establishes a new type of spin-phonon coupling through single ion anisotropy, a second-order spin-orbit coupling term, in Cd_{2}Os_{2}O_{7}.

5.
Nat Commun ; 7: 13220, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782151

ABSTRACT

Efforts have been ongoing to establish superconducting spintronics utilizing ferromagnet/superconductor heterostructures. Previously reported devices are based on spin-singlet superconductors (SSCs), where the spin degree of freedom is lost. Spin-polarized supercurrent induction in ferromagnetic metals (FMs) is achieved even with SSCs, but only with the aid of interfacial complex magnetic structures, which severely affect information imprinted to the electron spin. Use of spin-triplet superconductors (TSCs) with spin-polarizable Cooper pairs potentially overcomes this difficulty and further leads to novel functionalities. Here, we report spin-triplet superconductivity induction into a FM SrRuO3 from a leading TSC candidate Sr2RuO4, by fabricating microscopic devices using an epitaxial SrRuO3/Sr2RuO4 hybrid. The differential conductance, exhibiting Andreev-reflection features with multiple energy scales up to around half tesla, indicates the penetration of superconductivity over a considerable distance of 15 nm across the SrRuO3 layer without help of interfacial complex magnetism. This demonstrates potential utility of FM/TSC devices for superspintronics.

6.
Sci Rep ; 6: 23856, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27025538

ABSTRACT

We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1-xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in which Rh doping can weaken the (Ir Jeff = 1/2)-(O 2p) orbital hybridisation in the in-planar Rh-O-Ir bond networks.

7.
Sci Rep ; 5: 13366, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26300075

ABSTRACT

Spin-wave (magnon) scattering, when clearly observed by Raman spectroscopy, can be simple and powerful for studying magnetic phase transitions. In this paper, we present how to observe magnon scattering clearly by Raman spectroscopy, then apply the Raman method to study spin-ordering and spin-reorientation transitions of hexagonal manganite single crystal and thin films and compare directly with the results of magnetization measurements. Our results show that by choosing strong resonance condition and appropriate polarization configuration, magnon scattering can be clearly observed, and the temperature dependence of magnon scattering can be simple and powerful quantity for investigating spin-ordering as well as spin-reorientation transitions. Especially, the Raman method would be very helpful for investigating the weak spin-reorientation transitions by selectively probing the magnons in the Mn(3+) sublattices, while leaving out the strong effects of paramagnetic moments of the rare earth ions.

8.
J Phys Condens Matter ; 27(33): 336002, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26235708

ABSTRACT

We investigated the local electronic structure and magnetic properties of the cobaltite double perovskites La2CoIrO6 and La2CoPtO6 using Co L2,3-edge x-ray absorption spectroscopy and x-ray magnetic circular dichroism. Despite similarity in the local electronic structure (Co(2+) high-spin states) as well as in the crystal structure (P2(1)/n), only La2CoIrO6 exhibits substantial orbital and spin magnetic moments of Co(2+), whereas they are much weaker in the case of La2CoPtO6. This composition dependence is consistent with the results of magnetization measurements. The details of the mechanism of ferromagnetic ordering in the Co(2+) sublattice in La2CoIrO6 and the lack thereof in La2CoPtO6 are explained in terms of the orbital hybridization of the Co minority-spin t(2g) state and the Ir/Pt j(eff) = 1/2 state.

9.
Sci Rep ; 5: 10485, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26014521

ABSTRACT

Switching dynamics of ferroelectric materials are governed by the response of domain walls to applied electric field. In epitaxial ferroelectric films, thermally-activated 'creep' motion plays a significant role in domain wall dynamics, and accordingly, detailed understanding of the system's switching properties requires that this creep motion be taken into account. Despite this importance, few studies have investigated creep motion in ferroelectric films under ac-driven force. Here, we explore ac hysteretic dynamics in epitaxial BiFeO3 thin films, through ferroelectric hysteresis measurements, and stroboscopic piezoresponse force microscopy. We reveal that identically-fabricated BiFeO3 films on SrRuO3 or La0.67Sr0.33MnO3 bottom electrodes exhibit markedly different switching behaviour, with BiFeO3/SrRuO3 presenting essentially creep-free dynamics. This unprecedented result arises from the distinctive spatial inhomogeneities of the internal fields, these being influenced by the bottom electrode's surface morphology. Our findings further highlight the importance of controlling interface and defect characteristics, to engineer ferroelectric devices with optimised performance.

10.
Phys Rev Lett ; 115(26): 266402, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26765010

ABSTRACT

We investigated the metal-insulator transition (MIT) driven by all-in-all-out (AIAO) antiferromagnetic ordering in the 5d pyrochlore Cd(2)Os(2)O(7) using optical spectroscopy and first-principles calculations. We showed that the temperature evolution in the band-gap edge and free carrier density were consistent with rigid upward (downward) shifts of electron (hole) bands, similar to the case of Lifshitz transitions. The delicate relationship between the band gap and free carrier density provides experimental evidence for the presence of an AIAO metallic phase, a natural consequence of such MITs. The associated spectral weight change at high energy and first-principles calculations further support the origin of the MIT from the band shift near the Fermi level. Our data consistently support that the MIT induced by AIAO ordering in Cd(2)Os(2)O(7) is not close to a Slater type but instead to a Lifshitz type.

11.
Nat Mater ; 12(5): 397-402, 2013 May.
Article in English | MEDLINE | ID: mdl-23416728

ABSTRACT

The range of recently discovered phenomena in complex oxide heterostructures, made possible owing to advances in fabrication techniques, promise new functionalities and device concepts. One issue that has received attention is the bistable electrical modulation of conductivity in ferroelectric tunnel junctions (FTJs) in response to a ferroelectric polarization of the tunnelling barrier, a phenomenon known as the tunnelling electroresistance (TER) effect. Ferroelectric tunnel junctions with ferromagnetic electrodes allow ferroelectric control of the tunnelling spin polarization through the magnetoelectric coupling at the ferromagnet/ferroelectric interface. Here we demonstrate a significant enhancement of TER due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Ferroelectric tunnel junctions consisting of BaTiO3 tunnelling barriers and La(0.7)Sr(0.3)MnO3 electrodes exhibit a TER enhanced by up to ~10,000% by a nanometre-thick La(0.5)Ca(0.5)MnO3 interlayer inserted at one of the interfaces. The observed phenomenon originates from the metal-to-insulator phase transition in La(0.5)Ca(0.5)MnO3, driven by the modulation of carrier density through ferroelectric polarization switching. Electrical, ferroelectric and magnetoresistive measurements combined with first-principles calculations provide evidence for a magnetoelectric origin of the enhanced TER, and indicate the presence of defect-mediated conduction in the FTJs. The effect is robust and may serve as a viable route for electronic and spintronic applications.

12.
Phys Rev Lett ; 110(24): 247202, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165956

ABSTRACT

The temperature (T) dependence of the optical conductivity spectra σ(ω) of a single crystal SrRuO(3) thin film is studied over a T range from 5 to 450 K. We observed significant T dependence of the spectral weights of the charge transfer and interband d-d transitions across the ferromagnetic Curie temperature (T(c) ∼ 150 K). Such T dependence was attributed to the increase in the Ru spin moment, which is consistent with the results of density functional theory calculations. T scans of σ(Ω,T) at fixed frequencies Ω reveal a clear T(2) dependence below T(c), demonstrating that the Stoner mechanism is involved in the evolution of the electronic structure. In addition, σ(Ω,T) continues to evolve at temperatures above T(c), indicating that the local spin moment persists in the paramagnetic state. This suggests that SrRuO(3) is an intriguing oxide system with itinerant ferromagnetism.

13.
Nanotechnology ; 23(31): 315202, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22802159

ABSTRACT

To initiate resistance switching phenomena, it is usually necessary to apply a strong electric field to a sample. This forming process poses very serious obstacles in real nanodevice applications. In unipolar resistance switching (URS), it is well known that the forming originates from soft dielectric breakdown. However, the forming in bipolar resistance switching (BRS) is poorly understood. In this study, we investigated the forming processes in Pt/Ta2O5/TaOx/Pt and Pt/TaOx/Pt nanodevices, which showed BRS and URS, respectively. By comparing the double- and single-layer systems, we were able to observe differences in the BRS and URS forming processes. Using computer simulations based on an 'interface-modified random circuit breaker network model', we could explain most of our experimental observations. This success suggests that the BRS forming in our Pt/Ta2O5/TaOx/Pt double-layer system can occur via two processes, i.e., polarity-dependent resistance switching in the Ta2O5 layer and soft dielectric breakdown in the TaOx layer. This forming mechanism can be used to improve the performance of BRS devices. For example, we could improve the endurance properties of Pt/Ta2O5/TaOx/Pt cells by using a small forming voltage.

14.
Phys Rev Lett ; 107(5): 057602, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21867099

ABSTRACT

We report on nanoscale strain gradients in ferroelectric HoMnO(3) epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane x-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves.

15.
Phys Rev Lett ; 104(3): 036401, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366664

ABSTRACT

We report spectroscopic ellipsometry measurements of the anisotropy of the interband transitions parallel and perpendicular to the planes of (LaTiO3)n(LaAlO3)5 multilayers with n=1-3. These provide direct information about the electronic structure of the two-dimensional (2D) 3d{1} state of the Ti ions. In combination with local density approximation, including a Hubbard U calculation, we suggest that 2D confinement in the TiO2 slabs lifts the degeneracy of the t{2g} states leaving only the planar d{xy} orbitals occupied. We outline that these multilayers can serve as a model system for the study of the t{2g} 2D Hubbard model.

16.
Phys Rev Lett ; 105(20): 205701, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21231247

ABSTRACT

We investigate a reversible percolation system showing unipolar resistance switching in which percolating paths are created and broken alternately by the application of an electric bias. Owing to the dynamical changes in the percolating paths, different from those in classical percolating paths, a detailed understanding of the structure is demanding and challenging. Here, we develop a scaling theory that can explain the transport properties of these conducting paths; the theory is based on the fractal geometry of a percolating cluster. This theory predicts that two scaling behaviors emerge, depending on the topologies of the conducting paths. We confirm these theoretical predictions experimentally by observing material-independent universal scaling behaviors in unipolar resistance switching.

17.
J Phys Condens Matter ; 22(34): 345602, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-21403258

ABSTRACT

We have investigated the electronic structure of double perovskites, Ba(2)FeReO(6) (metallic) and Ca(2)FeReO(6) (insulating) using optical and x-ray absorption spectroscopy. By comparing the experimental results with the density functional theory calculations, we found that the electronic structure of Ba(2)FeReO(6) could be determined from the interaction of the electron correlation and spin-orbit coupling. On the other hand, for Ca(2)FeReO(6), the lattice distortion and electron correlation are important in determining the electronic structure. Additionally, the insulating gap in Ca(2)FeReO(6) is realized by the spin-orbit coupling. Our work shows that the subtle interplay of the spin-orbit interaction, electron correlation, and lattice distortion should be taken into account to understand the electronic structure of the 5d transition metal oxides.

18.
J Phys Condens Matter ; 22(48): 485602, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21406751

ABSTRACT

We have investigated the electronic structure of meta-stable perovskite Ca(1 - x)Sr(x)IrO(3)(x = 0, 0.5, and 1) thin films using transport measurements, optical spectroscopy, and first-principles calculations. We artificially fabricated the perovskite phase of Ca(1 - x)Sr(x)IrO(3), which has a hexagonal or post-perovskite crystal structure in bulk form, by growing epitaxial thin films on perovskite GdScO(3) substrates using an epi-stabilization technique. The transport properties of the perovskite Ca(1 - x)Sr(x)IrO(3) films systematically change from nearly insulating (or semi-metallic) for x = 0 to weakly metallic for x = 1. Due to the extended wavefunctions, 5d electrons are usually delocalized. However, the strong spin-orbit coupling in Ca(1 - x)Sr(x)IrO(3) results in the formation of effective total angular momentum J(eff) = 1/2 and 3/2 states, which puts Ca(1 - x)Sr(x)IrO(3) in the vicinity of a metal-insulator phase boundary. As a result, the electrical properties of the Ca(1 - x)Sr(x)IrO(3) films are found to be sensitive to x and strain.

19.
Phys Rev Lett ; 103(5): 057201, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19792528

ABSTRACT

We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO(3) that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO(3) films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature T(C) starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T(C) decrease to a decrease in the density of states (N(o)). Namely, in the thin film geometry, the hybridized Ru d(yz,zx) orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of N(o).

20.
Phys Rev Lett ; 102(2): 026801, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257301

ABSTRACT

We observed two types of reversible resistance switching (RS) effects in a NiO film: memory RS at low temperature and threshold RS at high temperature. We were able to control the type of RS effects by thermal cycling. These phenomena were explained using a new dynamic percolation model that can describe the rupture and formation of conducting filaments. We showed that the RS effects are governed by the thermal stability of the filaments, which arise from competition between Joule heating and thermal dissipation. This work provides us understandings on basic mechanism of the RS effects and their interrelation.

SELECTION OF CITATIONS
SEARCH DETAIL
...