Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(3): 665-670, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38206569

ABSTRACT

In living organisms, information is processed in interconnected symphonies of ionic currents spiking through protein ion channels. As a result of dynamic switching of their conductive states, ion channels exhibit a variety of current-voltage nonlinearities and memory effects. Fueled by the promise of computing architectures entirely different from von Neumann, recent attempts to identify and harness similar phenomena in artificial nanofluidic environments focused on demonstrating analogue circuit elements with memory. Here we explore aqueous ionic transport through two-dimensional (2D) membranes featuring arrays of ion-trapping crown-ether-like pores. We demonstrate that for aqueous salts featuring ions with different ion-pore binding affinities, memristive effects emerge through coupling between the time-delayed state of the system and its transport properties. We also demonstrate a nanopore array that behaves as a capacitor with a strain-tunable built-in barrier, yielding behaviors ranging from current spiking to an ohmic response. By focusing on the illustrative underlying mechanisms, we demonstrate that realistically observable memory effects may be achieved in nanofluidic systems featuring crown-porous 2D membranes.

2.
Sci Rep ; 13(1): 19813, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957224

ABSTRACT

Single-layer membranes have emerged as promising candidates for applications requiring high transport rates due to their low resistance to molecular transport. Owing to their atomically thin structure, these membranes experience significant microscopic fluctuations, emphasizing the need to explore their impact on ion transport processes. In this study, we investigate the effects of membrane fluctuations on the elementary scaling behavior of ion conductance [Formula: see text] as a function of ion concentration [Formula: see text], represented as [Formula: see text], using molecular dynamics simulations. Our findings reveal that membrane fluctuations not only alter the conductance coefficient [Formula: see text] but also the power-law exponent [Formula: see text]. We identify two distinct frequency regimes of membrane fluctuations, GHz-scale and THz-scale fluctuations, and examine their roles in conductance scaling. Furthermore, we demonstrate that the alteration of conductance scaling arises from the non-linearity between ion conductance and membrane shape. This work provides a fundamental understanding of ion transport in fluctuating membranes.

3.
Nanoscale ; 15(26): 11090-11098, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37337690

ABSTRACT

Ion transport is a fundamental mechanism in living systems that plays a role in cell proliferation, energy conversion, and maintaining homeostasis. This has inspired various nanofluidic applications such as electricity harvesting, molecular sensors, and molecular separation. Two dimensional (2D) nanoporous membranes are particularly promising for these applications due to their ultralow transport barriers. We investigated ion conduction across flexible 2D membranes via extensive molecular dynamics simulations. We found that the microscopic fluctuations of these membranes can significantly increase ion conductance, for example, by 320% in Cu-HAB with 0.5 M KCl. Our analysis of ion dynamics near the flexible membranes revealed that ion hydration is destabilized when the membrane fluctuated within a specific frequency range leading to improved ion conduction. Our results show that the dynamic coupling between the fluctuating membrane and ions can play a crucial role in ion conduction across 2D nanoporous membranes.

4.
Phys Rev E ; 106(2-2): 025106, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109939

ABSTRACT

We report that the atomic-scale vibrational coupling at the solid-fluid interface can substantially alter the interfacial properties such as wettability and fluid slip. The wettability of water droplets on substrates subjected to various vibrational frequencies is studied using molecular dynamics simulation. The contact angle increases (i.e., becomes more hydrophobic) when the oscillation frequency of the substrate matches the intermolecular bending frequency of liquid water. We investigate the underlying mechanism by examining the dynamics of water molecules at the interface and find that the temporal contact between the solid and fluid is shorter when the frequencies match, resulting in weak solid-fluid adsorption. We further report that the vibrational match at the interface reduces wall-fluid friction and enhances water transport through the nanopore. Our findings demonstrate the importance of the atomic-scale vibrational coupling at the solid-fluid interface on the physicochemical behavior of nanodevices and biological nanochannels.

5.
Sci Adv ; 8(2): eabj2510, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35030026

ABSTRACT

Mechanosensitivity is one of the essential functionalities of biological ion channels. Synthesizing an artificial nanofluidic system to mimic such sensations will not only improve our understanding of these fluidic systems but also inspire applications. In contrast to the electrohydrodynamic ion transport in long nanoslits and nanotubes, coupling hydrodynamical and ion transport at the single-atom thickness remains challenging. Here, we report the pressure-modulated ion conduction in graphene nanopores featuring nonlinear electrohydrodynamic coupling. Increase of ionic conductance, ranging from a few percent to 204.5% induced by the pressure­an effect that was not predicted by the classical linear coupling of molecular streaming to voltage-driven ion transport­was observed experimentally. Computational and theoretical studies reveal that the pressure sensitivity of graphene nanopores arises from the transport of capacitively accumulated ions near the graphene surface. Our findings may help understand the electrohydrodynamic ion transport in nanopores and offer a new ion transport controlling methodology.

6.
Nano Lett ; 22(1): 419-425, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34935387

ABSTRACT

Water purification using 2D nanoporous membranes has been drawing significant attention for over a decade because of fast water transport in ultrathin membranes. We perform a comprehensive study using molecular dynamics (MD) simulations on water desalination using 2D flexible membranes where the coupling between the fluid dynamics and mechanics of the membrane plays an important role. We observe that a considerable deformation and fluctuation in the 2D membrane results in an enhanced water permeability (up to 122%) along with a slight decrease in the salt rejection rate (less than 11%). Simulations on harmonically vibrating membranes indicate that the vibrational match at the membrane-water interface can significantly increase the permeance. We conduct mechanical stability tests and discuss the maximum endurable pressure of 2D porous membranes for water desalination. These findings will contribute to advances in applications using ultrathin membranes, such as energy harvesting and molecular separation.


Subject(s)
Nanopores , Water , Membranes, Artificial , Phonons , Porosity
7.
J Chem Phys ; 154(13): 134703, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33832257

ABSTRACT

The unique properties of aqueous electrolytes in ultrathin nanopores have drawn a great deal of attention in a variety of applications, such as power generation, water desalination, and disease diagnosis. Inside the nanopore, at the interface, properties of ions differ from those predicted by the classical ionic layering models (e.g., Gouy-Chapman electric double layer) when the thickness of the nanopore approaches the size of a single atom (e.g., nanopores in a single-layer graphene membrane). Here, using extensive molecular dynamics simulations, the structure and dynamics of aqueous ions inside nanopores are studied for different thicknesses, diameters, and surface charge densities of carbon-based nanopores [ultrathin graphene and finite-thickness carbon nanotubes (CNTs)]. The ion concentration and diffusion coefficient in ultrathin nanopores show no indication of the formation of a Stern layer (an immobile counter-ionic layer) as the counter-ions and nanopore atoms are weakly correlated in time compared to the strong correlation observed in thick nanopores. The weak correlation observed in ultrathin nanopores is indicative of a weak adsorption of counter-ions onto the surface compared to that of thick pores. The vanishing counter-ion adsorption (ion-wall correlation) in ultrathin nanopores leads to several orders of magnitude shorter ionic residence times (picoseconds) compared to the residence times in thick CNTs (seconds). The results of this study will help better understand the structure and dynamics of aqueous ions in ultrathin nanopores.

8.
ACS Nano ; 14(8): 10518-10526, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32806038

ABSTRACT

Ionic transport through a charged nanopore at low ion concentration is governed by the surface conductance. Several experiments have reported various power-law relations between the surface conductance and ion concentration, i.e., Gsurf ∝ c0α. However, the physical origin of the varying exponent, α, is not yet clearly understood. By performing extensive coarse-grained Molecular Dynamics simulations for various pore diameters, lengths, and surface charge densities, we observe varying power-law exponents even with a constant surface charge and show that α depends on how electrically "perfect" the nanopore is. Specifically, when the net charge of the solution in the pore is insufficient to ensure electroneutrality, the pore is electrically "imperfect" and such nanopores can exhibit varying α depending on the degree of "imperfectness". We present an ionic conductance theory for electrically "imperfect" nanopores that not only explains the various power-law relationships but also describes most of the experimental data available in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...