Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36295225

ABSTRACT

To evaluate the dynamic characteristics at all positions of the main spindle of a machine tool, an experimental point was selected using a full factorial design, and a vibration test was conducted. Based on the measurement position, the resonant frequency was distributed from approximately 236 to 242 Hz. The approximation model was evaluated based on its resonant frequencies and dynamic stiffness using regression and interpolation methods. The accuracy of the resonant frequency demonstrated by the kriging method was approximately 89%, whereas the highest accuracy of the dynamic stiffness demonstrated by the polynomial regression method was 81%. To further verify the approximation model, its dynamic characteristics were measured and verified at additional experimental points. The maximum errors yielded by the model, in terms of the resonant frequency and dynamic stiffness, were 1.6% and 7.1%, respectively.

2.
Proc Natl Acad Sci U S A ; 110(45): 18092-7, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145398

ABSTRACT

Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37-54]), although rare in recorded history, give sobering testimony to civilization's inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth's atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194-212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations.


Subject(s)
Meteoroids , Remote Sensing Technology/methods , Spacecraft , Remote Sensing Technology/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...