Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Sci Adv ; 9(34): eadj8336, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37611112

ABSTRACT

From fundamental physical constants to the identification of liquid shear elasticity, over the past decade, new ways have emerged to understand viscosity.

2.
Langmuir ; 39(34): 12206-12215, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37589758

ABSTRACT

Surfactant systems are often employed in cosmetic formulations where they dry on skin as a surface, thereby becoming increasingly concentrated systems. To better understand this drying process, we focused on the difference of self-assembled structures of the water/glycerol/polyoxyethylene (30) phytosteryl ether (EO30PS) system in bulk and on a solid substrate because the interaction between the substrate and the surfactant may have a substantial effect on the self-assembly, which may be related to the bulk structure but in detail may also differ strongly from the bulk situation. In bulk, small-angle neutron scattering (SANS) experiments showed that with increasing loss of water, the degree of ordering increases but changes of the aggregate structure are rather small. The results indicate that ellipsoidal micelles of EO30PS are densely packed and simply become more ordered in bulk during the drying process. On the other hand, neutron reflectometry revealed that EO30PS molecules adsorb onto a Si surface in the form of bilayers and analysis indicates that at a high concentration (c = 20 wt %), there are on average two bilayers (a double bilayer) on the Si substrate. The adsorbed membrane structure of EO30PS is rather thin with respect to its hydrophobic part, indicating tilted molecules, containing only some solvent, and being not highly ordered. These experimental results then allow for a much deeper understanding of the structural properties of practical formulations as they are applied, for instance, in cosmetic lotions.

3.
Polymers (Basel) ; 15(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37177350

ABSTRACT

Block copolymers synthesized via Atom Transfer Radical Polymerization from alkyl acrylate and t-butyl acrylate and the subsequent hydrolysis of the t-butyl acrylate to acrylic acid were systematically varied with respect to their hydrophobic part by the variation in the alkyl chain length and the degree of polymerisation in this block. Depending on the architecture of the hydrophobic part, they had a more or less pronounced tendency to form copolymer micelles in an aqueous solution. They were employed for the preparation of IPECs by mixing the copolymer aggregates with the polycations polydiallyldimethylammonium chloride (PDADMAC) or q-chit. The IPEC structure as a function of the composition was investigated by Static Light and Small Angle Neutron Scattering. For weakly-associated block copolymers (short alkyl chain), complexation with polycation led to the formation of globular complexes, while already existing micelles (long alkyl chain) grew further in mass. In general, aggregates became larger upon the addition of further polycation, but this growth was much more pronounced for PDADMAC compared to q-chit, thereby leading to the formation of clusters of aggregates. Accordingly, the structure of such IPECs with a hydrophobic block depended largely on the type of complexing polyelectrolyte, which allowed for controlling the structural organisation via the molecular architecture of the two oppositely charged polyelectrolytes.

4.
Molecules ; 27(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36431929

ABSTRACT

Mesoscopic shear elasticity has been revealed in ordinary liquids both experimentally by reinforcing the liquid/surface interfacial energy and theoretically by nonextensive models. The elastic effects are here examined in the frame of small molecules with strong electrostatic interactions such as room temperature ionic liquids [emim][Tf2N] and nitrate solutions exhibiting paramagnetic properties. We first show that these charged fluids also exhibit a nonzero low-frequency shear elasticity at the submillimeter scale, highlighting their resistance to shear stress. A neutron scattering study completes the dynamic mechanical analysis of the paramagnetic nitrate solution, evidencing that the magnetic properties do not induce the formation of a structure in the solution. We conclude that the elastic correlations contained in liquids usually considered as viscous away from any phase transition contribute in an effective way to collective effects under external stress whether mechanical or magnetic fields.

5.
J Biomed Mater Res A ; 110(2): 298-303, 2022 02.
Article in English | MEDLINE | ID: mdl-34351058

ABSTRACT

The dynamical mechanical analysis of blood generally uses models inspired by conventional flows, assuming scale-independent homogeneous flows and without considering fluid-surface boundary interactions. The present experimental study highlights the relevance of using an approach in line with physiological reality providing a strong interaction between the fluid and the boundary interface. New dynamic properties of human blood plasma are found: a finite shear elastic response (solid-like property) is identified in nearly static conditions, which also depends on the scale (being reinforced at small scales). The elastic behavior is confirmed by the induction, without heat transfer, of local hot and cold thermodynamic states evidencing a thermo-mechanical coupling in blood plasma so far known only in elastic materials. This finding opens new routes for medical diagnosis and device fabrication.


Subject(s)
Plasma , Elasticity , Humans , Stress, Mechanical
6.
Langmuir ; 37(45): 13235-13243, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34735164

ABSTRACT

Using CO2 as a resource in the production of materials is a viable alternative to conventional, petroleum-based raw materials and therefore offers great potential for more sustainable chemistry. This study presents a detailed structural characterization of aggregates of nonionic dodecyl surfactants with different amounts of CO2 substituting ethylene oxide (EO) in the head group. The micellar structure was characterized as a function of concentration and temperature by dynamic and static light scattering and, in further detail, by small-angle neutron scattering (SANS). The influence of the CO2 unit in the hydrophilic EO group is systematically compared to the incorporation of propylene oxide (PO) and propiolactone (PL). The surfactants with carbonate groups in their head groups form ellipsoidal micelles in an aqueous solution similar to conventional nonionic surfactants, becoming bigger with increasing CO2 content. In contrast, the incorporation of PO units hardly alters the behavior, while the incorporation of a PL unit has an effect comparable to the CO2 unit. The analysis of the SANS data shows decreasing hydration with increasing CO2 and PL content. By increasing the temperature, a typical sphere-rod transition is observed, where CO2 surfactants show a much higher elongation with increasing temperature, which is correlated with the reduced cloud point and a lower extent of head group hydration. Our findings demonstrate that CO2-containing surface-active compounds are an interesting, potentially "greener" alternative to conventional nonionic surfactants.

7.
Polymers (Basel) ; 13(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34301137

ABSTRACT

The recent identification of a finite shear elasticity in mesoscopic fluids has motivated the search of other solid-like properties of liquids. We present an innovative thermal approach of liquids. We identify a dynamic thermo-elastic mesoscopic behavior by building the thermal image produced by different liquids upon applying a low frequency mechanical shear field. We selected three fluids: a low molecular weight polybutylacrylate (PBuA), polypropyleneglycol (PPG), and glycerol. We demonstrate that a part of the energy of the shear strain is converted in cold and hot shear bands varying synchronously with the applied shear field. This thermodynamic change suggests a coupling to shear elastic modes in agreement with the low frequency shear elasticity theoretically foreseen and experimentally demonstrated.

8.
J Phys Chem B ; 125(30): 8652-8658, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34296613

ABSTRACT

In the conventional picture, the temperature of a liquid bath in the quiescent state is uniform down to thermal fluctuation length scales. Here we examine the impact of a low-frequency shear mechanical field (hertz) on the thermal equilibrium of polypropylene glycol and liquid water away from any phase transition confined between high-energy surfaces. We show the emergence of both cooling and heating shear waves of several tens of micrometers widths varying synchronously with the applied shear strain wave. The thermal wave is stable at low strain amplitude and low frequency while thermal harmonics develop by increasing the frequency or the strain amplitude. The liquid layer behaves as a dynamic thermoelastic medium challenging the extension of the fluctuation-dissipation theorem to nonequilibrium fluids. This view is in agreement with recent theoretical models predicting that liquids support shear elastic waves up to a finite propagation length scale of the order the thermal wave.

9.
J Phys Chem Lett ; 12(1): 650-657, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33393306

ABSTRACT

Liquids confined to sub-millimeter scales have remained poorly understood. One of the most striking effects is the large elasticity revealed using good wetting conditions, which grows upon further decreasing the confinement length, L. These systems display a low-frequency shear modulus in the order of 1-103 Pa, contrary to our everyday experience of liquids as bodies with a zero low-frequency shear modulus. While early experimental evidence of this effect was met with skepticism and abandoned, further experimental results and, most recently, a new atomistic theoretical framework have confirmed that liquids indeed possess a finite low-frequency shear modulus G', which scales with the inverse cubic power of confinement length L. We show that this law is universal and valid for a wide range of materials (liquid water, glycerol, ionic liquids, non-entangled polymer liquids, isotropic liquids crystals). Open questions and potential applications in microfluidics mechanochemistry, energy, and other fields are highlighted.

10.
J Phys Chem B ; 124(41): 9126-9135, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32945665

ABSTRACT

We have performed small-angle neutron scattering in a momentum transfer range (0.05 < Q < 0.5 Å-1) to study long-range order and concentration fluctuations in deep eutectic solvents (DESs) and their aqueous solutions. Ethaline (choline chloride/ethylene glycol), glycerol/lactic acid, and menthol/decanoic acid mixtures were selected to illustrate individually the case of ionic, nonionic, and hydrophobic mixtures. Carefully designed isotopic labeling was used to emphasize selectively the spatial correlations between the different solvent components. For ethaline DESs and their aqueous solutions, a weak low-Q peak observed only for certain compositions and some partial structure factors revealed the mesoscopic segregation of ethylene glycol molecules that do not participate in the solvation of ionic units, either because they are in excess with respect to the eutectic stoichiometry (1:4 neat ethaline) or substituted by water (4w-ethaline and higher aqueous dilutions). For the nonionic hydrophilic solutions, such a mesoscopic segregation was not observed. This indicates that the better balanced interactions between the three nonionic H-bonded components (water, lactic acid, and glycerol) favor homogeneous mixing. For the hydrophobic DESs, we observed an excess of coherent scattering intensity centered at Q = 0, which could be reproduced by a model of noninteracting spherical domains. Local concentration fluctuations are not excluded either. However, unlike liquid mixtures with a tendency to demix, we have found no evidence of expansion of domains with different compositions to a large scale.

11.
Sci Rep ; 10(1): 13340, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32770000

ABSTRACT

Thermo-elasticity couples the deformation of an elastic (solid) body to its temperature and vice-versa. It is a solid-like property. Highlighting such property in liquids is a paradigm shift: it requires long-range collective interactions that are not considered in current liquid descriptions. The present microthermal studies provide evidence for such solid-like correlations. It is shown that ordinary liquids emit a modulated thermal signal when applying a low frequency (Hz) mechanical shear stress. The liquid splits in several tenths microns wide hot and cold thermal bands, all varying synchronously and separately with the applied stress wave reaching a sizable amplitude of ± 0.2 °C. Thermomechanical coupling challenges fluid dynamics: it reveals that the liquid does not dissipate the energy of shear waves at low frequency, but converts it in non-uniform thermodynamic states. The dynamic thermal changes work in an adiabatic way supporting the hypothesis of the excitation of macroscopic elastic correlations whose range is limited to several tens of microns, in accordance with recent non-extensive theoretical models. The proof of thermomechanical coupling opens the way to a new generation of energy-efficient temperature converters.

12.
ChemSusChem ; 13(3): 601-607, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31769195

ABSTRACT

Nonionic ethylene oxide (EO)-based surfactants are widely employed in commercial applications and normally form gel-like liquid crystalline phases at higher concentrations, rendering their handling under such conditions difficult. By incorporating CO2 units in their hydrophilic head groups, the consumption of the petrochemical EO was reduced, and the tendency to form liquid crystals was suppressed completely. This surprising behavior was characterized by rheology and studied with respect to its structural origin by means of small-angle neutron scattering (SANS). These experiments showed a strongly reduced repulsive interaction between the micellar aggregates, attributed to a reduced hydration and enhanced interpenetration of the head groups owing to the presence of the CO2 units. In addition, with increasing CO2 content the surfactants became more efficient and effective with respect to their surface activity. These findings are important because the renewable resource CO2 is used, and the CO2 -containing surfactants allow handling at very high concentrations, an aspect of enormous practical importance.

13.
Chem Sci ; 10(2): 385-397, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30713642

ABSTRACT

The ionic assembly of oppositely charged polyelectrolyte-surfactant complexes (PESCs) is often done with the aim of constructing more functional colloids, for instance as advanced delivery systems. However, PESCs are often not easily loaded with a solubilisate due to intrinsic restrictions of such complexes. This question was addressed from a different starting point: by employing microemulsion droplets as heavily loaded surfactant systems and thereby avoiding potential solubilisation limitations from the beginning. We investigated mixtures of cationic oil-in-water (O/W) microemulsion droplets and oppositely charged sodium polyacrylate (NaPA) and determined structure and phase behaviour as a function of the mixing ratio for different droplet sizes and different M w (NaPA). Around an equimolar charge ratio an extended precipitate region is present, which becomes wider for larger droplets and with increasing M w of the NaPA. Static and dynamic light scattering (SLS and DLS) and small-angle neutron scattering (SANS) show the formation of one-dimensional arrangements of microemulsion droplets for polyelectrolyte excess, which become more elongated with increasing M w (NaPA) and less so with increasing NaPA excess. What is interesting is a marked sensitivity to ionic strength, where already a modest increase to ∼20 mM leads to a dissolution of the complexes. This work shows that polyelectrolyte/microemulsion complexes (PEMECs) are structurally very versatile hybrid systems, combining the high solubilisate loading of microemulsions with the larger-scale structuring induced by the polymer, thereby markedly extending the concept of conventional PESCs. This type of system has not been described before and is highly promising for future applications where high payloads are to be formulated.

14.
Soft Matter ; 14(8): 1482-1491, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29400392

ABSTRACT

Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) have been used to investigate the temperature-dependent solution behaviour of highly-branched poly(N-isopropylacrylamide) (HB-PNIPAM). SANS experiments have shown that water is a good solvent for both HB-PNIPAM and a linear PNIPAM control at low temperatures where the small angle scattering is described by a single correlation length model. Increasing the temperature leads to a gradual collapse of HB-PNIPAM until above the lower critical solution temperature (LCST), at which point aggregation occurs, forming disperse spherical particles of up to 60 nm in diameter, independent of the degree of branching. However, SANS from linear PNIPAM above the LCST is described by a model that combines particulate structure and a contribution from solvated chains. NSE was used to study the internal and translational solution dynamics of HB-PNIPAM chains below the LCST. Internal HB-PNIPAM dynamics is described well by the Rouse model for non-entangled chains.

15.
J Chem Phys ; 146(2): 024501, 2017 Jan 14.
Article in English | MEDLINE | ID: mdl-28088144

ABSTRACT

The confinement of liquid mixtures in porous channels provides new insight into fluid ordering at the nanoscale. In this study, we address a phenomenon of microphase separation, which appears as a novel fascinating confinement effect for fully miscible binary liquids. We investigate the structure of tert-butanol-toluene mixtures confined in the straight and mono-dispersed cylindrical nanochannels of SBA-15 mesoporous silicates (D = 8.3 nm). Small angle neutron scattering experiments on samples with carefully designed isotopic compositions are performed to systematically vary the scattering length density of the different compounds and assess the radial concentration profile of the confined phases. The resulting modulation of the Bragg reflections of SBA-15 is compared with the predictions from different core-shell models, highlighting a molecular-scale phase-separated tubular structure with the tert-butanol forming a layer at the pore surface, surrounding a toluene-rich core. The present structural study suggests that the microphase separation phenomenon in confinement, which so far had only been reported for a smaller pore size (D = 3.65 nm) and a unique mixture composition, must be considered as a general phenomenon. It also highlights the strength of neutron scattering method with isotopic substitution, which is a unique experimental approach to reveal this phenomenon.

16.
J Colloid Interface Sci ; 473: 52-9, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27054766

ABSTRACT

HYPOTHESIS: The phase behavior and the properties of water, oil, surfactant, and cosurfactant mixtures depend on the fine balance of different forces, among them the bending energy of the amphiphilic film. Thus, it should be possible to control the structural evolution of nonionic microemulsions by the cosurfactant content and the hydration of the surfactant headgroup. EXPERIMENTS: An extensive investigation of the pseudoternary phase diagram of mixtures of water, isopropyl palmitate, polyoxyethylene (10) oleyl ether Brij 97 (C18E10), and butanol is presented for two different cosurfactant concentrations, thereby varying the hydrophilicity of the amphiphile. The studies were performed employing conductometric titrations, differential scanning calorimetry (DSC), and small-angle neutron scattering (SANS). FINDINGS: A systematic growth of the domain sizes and correlation lengths is observed by increasing the water content in the initial oil/surfactant solution. The formation of a bicontinuous structure, as deduced from conductivity is directly related to the presence of free water unbound to the EO units of the surfactant, as determined by DSC. The experimental results, e.g., the extension of the different phase regions and the mesoscopic structure are discussed on a molecular level, therefore providing a direct link between the composition of the microemulsions and the resulting structure and properties.


Subject(s)
1-Butanol/chemistry , Emulsions/chemistry , Palmitates/chemistry , Phase Transition , Plant Oils/chemistry , Polyethylene Glycols/chemistry , Calorimetry, Differential Scanning , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents/chemistry
17.
PLoS One ; 11(2): e0147914, 2016.
Article in English | MEDLINE | ID: mdl-26844881

ABSTRACT

The present work reveals that at the sub-millimeter length-scale, molecules in the liquid state are not dynamically free but elastically correlated. It is possible to "visualize" these hidden elastic correlations by using the birefringent properties of pretransitional swarms persistent in liquids presenting a weak first order transition. The strategy consists in observing the optical response of the isotropic phase of mesogenic fluids to a weak (low energy) mechanical excitation. We show that a synchronized optical response is observable at frequencies as low as 0.01Hz and at temperatures far away from any phase transition (up to at least 15°C above the transition). The observation of a synchronized optical signal at very low frequencies points out a collective response and supports the existence of long-range elastic (solid-like) correlations existing at the sub-millimeter length-scale in agreement to weak solid-like responses already identified in various liquids including liquid water. This concept of elastically linked molecules differs deeply with the academic view of molecules moving freely in the liquid state and has profound consequences on the mechanisms governing collective effects as glass formation, gelation and transport, or synchronized processes in physiological media.


Subject(s)
Elasticity , Light , Liquid Crystals , Models, Theoretical
18.
J Colloid Interface Sci ; 466: 369-76, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26752432

ABSTRACT

Various compounds based on the structural leitmotif of 12-hydroxy stearic acid (HSA) were studied with respect to their ability to form organogels. They were modified by ethoxylation in order to avoid the acid group of HSA, which is unwanted for many of the applications of organogels. In this paper, it is shown that the rheological performance of organogels depends strongly on the extent of ethoxylation, exhibiting an optimum at intermediate degrees of ethoxylation. Furthermore, we reveal that the ability for gelation as well as the mechanical properties are substantially reduced by the presence of stearic acid (SA) in the original reaction mixture, which is a typical contamination of HSA. This is quantified by the amount of gelator required for gelation and the elastic moduli observed for the gels. At the same time the mesoscopic structure, as probed by small-angle neutron scattering (SANS), is almost unchanged for different degrees of ethoxylation or the addition of SA--and similarly thick fibres are observed, while the viscoelastic parameters evolve. Accordingly the elastic efficiency of the individual structural units is responsible for the observed changes in the gelation properties. These findings are relevant for the application of such low molecular weight organogelators in practical formulations, as one can optimise the rheological properties of organogelators by appropriately choosing the degree of ethoxylation.

19.
J Phys Chem Lett ; 4(12): 2026-9, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-26283247

ABSTRACT

The shear flow of ordinary liquids is for the first time observed at the submillimeter scale by thermal imaging. We report on microinfrared experiments, showing that liquids as important as water flowing on wetting surfaces produce cooling, while the academic view would foresee heating production. This apparent counterintuitive cooling effect shows that the increase of the internal energy due to the flow can result in different shapes, including a cooling process, before reaching the conventional heating regime at higher shear rates. This unknown property might be interpreted as a transient stretching state of the liquid. Shearing liquids might be a promising alternative compared to conventional endothermic processes (gas expansion or vaporization of a liquid, the Peltier effect, and so forth).

20.
J Phys Condens Matter ; 24(37): 372101, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22889939

ABSTRACT

This article deals with the identification of solid-like properties measured at room temperature at a sub-millimetre length scale in liquid water. At a macroscopic scale, normal liquids (i.e. above melting temperature), and in particular water, are typically and empirically defined by the absence of shear elasticity, in contrast to solids or plastic fluids that require a stress threshold for flowing. A novel method optimizing the transmission of the shear stress to the sample enables a more complete probe of the mechanical response of liquids. It reveals that glass formers and viscous alkanes actually exhibit finite macroscopic shear elasticity away from any phase transition. This protocol is here applied for the first time to liquid water at room temperature, revealing, at the sub-millimetre scale, a low-frequency solid-like property.

SELECTION OF CITATIONS
SEARCH DETAIL