Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Mol Immunol ; 48(15-16): 1940-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21689853

ABSTRACT

The inflammatory response is a self-limiting process which involves the sequential activation of signaling pathways leading to the production of both pro- and anti-inflammatory mediators. Galectin-1 (Gal-1), an endogenous lectin found in peripheral lymphoid organs and inflammatory sites, elicits a broad spectrum of biological functions predominantly by acting as a potent anti-inflammatory factor and as a suppressive agent for T-cell responses. However, the molecular pathways underlying Gal-1 expression and function remain poorly understood. Here we identified a regulatory loop linking Gal-1 expression and function to NF-κB activation. NF-κB-activating stimuli increased Gal-1 expression on T cells, an effect which could be selectively prevented by inhibitors of NF-κB signaling. Accordingly, transient transfection of the p65 subunit of NF-κB was sufficient to induce high Gal-1 expression. Using in silico studies and chromatin immunoprecipitation analysis we have identified a functional NF-κB binding site within the first intron of the LGALS1 gene. In addition, our results show that exogenous Gal-1 can attenuate NF-κB activation, as shown by inhibition of IκB-α degradation induced by pro-inflammatory stimuli, higher cytoplasmic retention of p65, lower NF-κB DNA binding activity and impaired transcriptional activation of target genes. The present study suggest a novel regulatory loop by which NF-κB induces expression of Gal-1, which in turn may lead to negative control of NF-κB signaling.


Subject(s)
Galectin 1/biosynthesis , Gene Expression Regulation/immunology , NF-kappa B/metabolism , Signal Transduction/immunology , Binding Sites , Blotting, Western , Cells, Cultured , Chromatin Immunoprecipitation , Electrophoretic Mobility Shift Assay , Feedback, Physiological/physiology , Galectin 1/genetics , Galectin 1/immunology , Gene Expression , Humans , Microscopy, Confocal , NF-kappa B/immunology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transfection
2.
Medicina (B Aires) ; 64(2): 135-8, 2004.
Article in Spanish | MEDLINE | ID: mdl-15628300

ABSTRACT

We have previously shown that nuclear receptor coactivator overexpression significantly enhanced NF-kappaB activity in a dose response manner. We studied the mechanism by which TIF2 regulates NF-kappaB activity. We determined that: 1) the p38 specific inhibitor reduces 50% NF-kappaB transcriptional activity, even in cells that overexpress distinct TIF2 deletions; 2) there is a physical interaction between TIF2 and p38 and RelA determined through in vitro translated protein binding assays; 3) TIF2 is a p38 substrate; 4) there is a physical interaction between TIF2 and IKK in TNF-alpha 20 ng/ml stimulated or not HEK 293 cell protein extract, and IkappaB only in basal conditions, determined by binding pull down assays. This NF-kappaB complex regulates its activity and targets gene expression in a determined physiologic context depending on the coactivator complex content.


Subject(s)
NF-kappa B/metabolism , Transcription Factors/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Enzyme Activation , Humans , Nuclear Receptor Coactivator 2 , Phosphorylation , Transcriptional Activation , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
3.
Medicina [B Aires] ; 64(2): 135-8, 2004.
Article in Spanish | BINACIS | ID: bin-38530

ABSTRACT

We have previously shown that nuclear receptor coactivator overexpression significantly enhanced NF-kappaB activity in a dose response manner. We studied the mechanism by which TIF2 regulates NF-kappaB activity. We determined that: 1) the p38 specific inhibitor reduces 50


NF-kappaB transcriptional activity, even in cells that overexpress distinct TIF2 deletions; 2) there is a physical interaction between TIF2 and p38 and RelA determined through in vitro translated protein binding assays; 3) TIF2 is a p38 substrate; 4) there is a physical interaction between TIF2 and IKK in TNF-alpha 20 ng/ml stimulated or not HEK 293 cell protein extract, and IkappaB only in basal conditions, determined by binding pull down assays. This NF-kappaB complex regulates its activity and targets gene expression in a determined physiologic context depending on the coactivator complex content.

SELECTION OF CITATIONS
SEARCH DETAIL
...