Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 19(5): 1125-1130, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38712757

ABSTRACT

There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Drug Design , Peptides, Cyclic , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Depsipeptides/pharmacology , Depsipeptides/chemistry , Lipoproteins/chemistry , Lipoproteins/metabolism , Lipoproteins/pharmacology , Lipoproteins/antagonists & inhibitors , Bacterial Proteins , Peptides , Aspartic Acid Endopeptidases
2.
J Org Chem ; 88(14): 10020-10026, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37418624

ABSTRACT

Five-membered ring systems are ubiquitous throughout natural products and synthetic therapeutics, and thus, efficient methods to access this essential scaffold are required. Herein, we report the thioacid-mediated, 5-exo-trig cyclization of various 1,6-dienes, with high yields of up to 98%. The labile thioester functionality can be exploited to generate a free thiol residue which can be used as a functional handle or removed entirely to provide the traceless cyclized product.

3.
Org Biomol Chem ; 20(42): 8192-8196, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36226353

ABSTRACT

Disulfide bonds are an essential feature of many bioactive peptides, however, they are labile to reducing conditions which can limit therapeutic application. Herein, we report an efficient methodology for peptide macrocyclisation, furnishing thioether mimetics of disulfide linkages via thiol-ene click chemistry. Furthermore, this methodology is applied to the efficient synthesis of analogues of the neuropeptide oxytocin and in a highly efficient route to the clinical therapeutic carbetocin.


Subject(s)
Neuropeptides , Sulfhydryl Compounds , Sulfhydryl Compounds/chemistry , Sulfides/chemistry , Oxytocin , Click Chemistry/methods , Disulfides/chemistry
4.
Chem Soc Rev ; 50(19): 10857-10894, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34397045

ABSTRACT

Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.


Subject(s)
Peptides , Proteins , Oxidation-Reduction
5.
Angew Chem Int Ed Engl ; 60(35): 19428-19434, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34137493

ABSTRACT

The control of site selectivity in asymmetric mono-hydrogenation of dienes or polyenes remains largely underdeveloped. Herein, we present a highly efficient desymmetrization of 1,4-dienes via iridium-catalyzed site- and enantioselective hydrogenation. This methodology demonstrates the first iridium-catalyzed hydrogenative desymmetriation of meso dienes and provides a concise approach to the installation of two vicinal stereogenic centers adjacent to an alkene. High isolated yields (up to 96 %) and excellent diastereo- and enantioselectivities (up to 99:1 d.r. and 99 % ee) were obtained for a series of divinyl carbinol and divinyl carbinamide substrates. DFT calculations reveal that an interaction between the hydroxy oxygen and the reacting hydride is responsible for the stereoselectivity of the desymmetrization of the divinyl carbinol. Based on the calculated energy profiles, a model that simulates product distribution over time was applied to show an intuitive kinetics of this process. The usefulness of the methodology was demonstrated by the synthesis of the key intermediates of natural products zaragozic acid A and (+)-invictolide.

6.
Front Chem ; 8: 583272, 2020.
Article in English | MEDLINE | ID: mdl-33282831

ABSTRACT

Radical thiol-ene chemistry has been demonstrated for a range of applications in peptide science, including macrocyclization, glycosylation and lipidation amongst a myriad of others. The thiol-ene reaction offers a number of advantages in this area, primarily those characteristic of "click" reactions. This provides a chemical approach to peptide modification that is compatible with aqueous conditions with high orthogonality and functional group tolerance. Additionally, the use of a chemical approach for peptide modification affords homogeneous peptides, compared to heterogeneous mixtures often obtained through biological methods. In addition to peptide modification, thiol-ene chemistry has been applied in novel approaches to biological studies through synthesis of mimetics and use in development of probes. This review will cover the range of applications of the radical-mediated thiol-ene reaction in peptide and protein science.

7.
Chem Sci ; 12(5): 1937-1943, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-34163958

ABSTRACT

Asymmetric hydrogenation is one of the most commonly used tools in organic synthesis, whereas, kinetic resolution via asymmetric hydrogenation is less developed. Herein, we describe the first iridium catalyzed kinetic resolution of a wide range of trisubstituted secondary and tertiary allylic alcohols. Large selectivity factors were observed in most cases (s up to 211), providing the unreacted starting materials in good yield with high levels of enantiopurity (ee up to >99%). The utility of this method is highlighted in the enantioselective formal synthesis of some bioactive natural products including pumiliotoxin A, inthomycin A and B. DFT studies and a selectivity model concerning the origin of selectivity are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...