Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 22(8): 1512-24, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22645259

ABSTRACT

The key genes required for Bacillus anthracis to cause anthrax have been acquired recently by horizontal gene transfer. To understand the genetic background for the evolution of B. anthracis virulence, we obtained high-redundancy genome sequences of 45 strains of the Bacillus cereus sensu lato (s.l.) species that were chosen for their genetic diversity within the species based on the existing multilocus sequence typing scheme. From the resulting data, we called more than 324,000 new genes representing more than 12,333 new gene families for this group. The core genome size for the B. cereus s.l. group was ∼1750 genes, with another 2150 genes found in almost every genome constituting the extended core. There was a paucity of genes specific and conserved in any clade. We found no evidence of recent large-scale gene loss in B. anthracis or for unusual accumulation of nonsynonymous DNA substitutions in the chromosome; however, several B. cereus genomes isolated from soil and not previously associated with human disease were degraded to various degrees. Although B. anthracis has undergone an ecological shift within the species, its chromosome does not appear to be exceptional on a macroscopic scale compared with close relatives.


Subject(s)
Bacillus anthracis/genetics , Bacillus cereus/genetics , Evolution, Molecular , Genome, Bacterial , Bacillus anthracis/classification , Bacillus cereus/classification , Base Sequence , Chromosomes, Bacterial/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Genetic Variation , Genome Size , Homologous Recombination , Multilocus Sequence Typing , Phylogeny , Selection, Genetic , Sequence Alignment , Soil Microbiology
2.
BMC Bioinformatics ; 12: 109, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21507258

ABSTRACT

BACKGROUND: OmniLog™ phenotype microarrays (PMs) have the capability to measure and compare the growth responses of biological samples upon exposure to hundreds of growth conditions such as different metabolites and antibiotics over a time course of hours to days. In order to manage the large amount of data produced from the OmniLog™ instrument, PheMaDB (Phenotype Microarray DataBase), a web-based relational database, was designed. PheMaDB enables efficient storage, retrieval and rapid analysis of the OmniLog™ PM data. DESCRIPTION: PheMaDB allows the user to quickly identify records of interest for data analysis by filtering with a hierarchical ordering of Project, Strain, Phenotype, Replicate, and Temperature. PheMaDB then provides various statistical analysis options to identify specific growth pattern characteristics of the experimental strains, such as: outlier analysis, negative controls analysis (signal/background calibration), bar plots, pearson's correlation matrix, growth curve profile search, k-means clustering, and a heat map plot. This web-based database management system allows for both easy data sharing among multiple users and robust tools to phenotype organisms of interest. CONCLUSIONS: PheMaDB is an open source system standardized for OmniLog™ PM data. PheMaDB could facilitate the banking and sharing of phenotype data. The source code is available for download at http://phemadb.sourceforge.net.


Subject(s)
Databases, Factual , Information Storage and Retrieval/methods , Phenotype , Bacillus anthracis/classification , Bacillus anthracis/growth & development , Bacillus anthracis/metabolism , Internet , Microarray Analysis , Software
3.
PLoS Negl Trop Dis ; 4(11): e878, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21085471

ABSTRACT

BACKGROUND: Despite the global threat caused by arthropod-borne viruses, there is not an efficient method for screening vector populations to detect novel viral sequences. Current viral detection and surveillance methods based on culture can be costly and time consuming and are predicated on prior knowledge of the etiologic agent, as they rely on specific oligonucleotide primers or antibodies. Therefore, these techniques may be unsuitable for situations when the causative agent of an outbreak is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explored the use of high-throughput pyrosequencing for surveillance of arthropod-borne RNA viruses. Dengue virus, a member of the positive strand RNA Flavivirus family that is transmitted by several members of the Aedes genus of mosquitoes, was used as a model. Aedes aegypti mosquitoes experimentally infected with dengue virus type 1 (DENV-1) were pooled with noninfected mosquitoes to simulate samples derived from ongoing arbovirus surveillance programs. Using random-primed methods, total RNA was reverse-transcribed and resulting cDNA subjected to 454 pyrosequencing. CONCLUSIONS/SIGNIFICANCE: In two types of samples, one with 5 adult mosquitoes infected with DENV-1- and the other with 1 DENV-1 infected mosquito and 4 noninfected mosquitoes, we identified DENV-1 DNA sequences. DENV-1 sequences were not detected in an uninfected control pool of 5 adult mosquitoes. We calculated the proportion of the Ae. aegypti metagenome contributed by each infecting Dengue virus genome (p(IP)), which ranged from 2.75×10(-8) to 1.08×10(-7). DENV-1 RNA was sufficiently concentrated in the mosquito that its detection was feasible using current high-throughput sequencing instrumentation. We also identified some of the components of the mosquito microflora on the basis of the sequence of expressed RNA. This included members of the bacterial genera Pirellula and Asaia, various fungi, and a potentially uncharacterized mycovirus.


Subject(s)
Aedes/virology , Dengue Virus/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Insect Vectors/virology , Animals , Arboviruses/genetics , Arboviruses/isolation & purification , Dengue/virology , Dengue Virus/genetics , Humans
4.
J Bacteriol ; 192(23): 6313-4, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20870763

ABSTRACT

The Gram-negative Burkholderia genus includes several species of intracellular bacterial pathogens that pose substantial risk to humans. In this study, we have generated draft genome sequences of 15 strains of B. oklahomensis, B. pseudomallei, B. thailandensis, and B. ubonensis to an average sequence read coverage of 25- to 40-fold.


Subject(s)
Burkholderia Infections/microbiology , Burkholderia/genetics , Burkholderia/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Environmental Microbiology , Genome, Bacterial , Humans , Molecular Sequence Data , Sequence Analysis, DNA/methods
5.
Genome Biol ; 11(1): R1, 2010 Jan 04.
Article in English | MEDLINE | ID: mdl-20047673

ABSTRACT

BACKGROUND: New DNA sequencing technologies have enabled detailed comparative genomic analyses of entire genera of bacterial pathogens. Prior to this study, three species of the enterobacterial genus Yersinia that cause invasive human diseases (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) had been sequenced. However, there were no genomic data on the Yersinia species with more limited virulence potential, frequently found in soil and water environments. RESULTS: We used high-throughput sequencing-by-synthesis instruments to obtain 25- to 42-fold average redundancy, whole-genome shotgun data from the type strains of eight species: Y. aldovae, Y. bercovieri, Y. frederiksenii, Y. kristensenii, Y. intermedia, Y. mollaretii, Y. rohdei, and Y. ruckeri. The deepest branching species in the genus, Y. ruckeri, causative agent of red mouth disease in fish, has the smallest genome (3.7 Mb), although it shares the same core set of approximately 2,500 genes as the other members of the species, whose genomes range in size from 4.3 to 4.8 Mb. Yersinia genomes had a similar global partition of protein functions, as measured by the distribution of Cluster of Orthologous Groups families. Genome to genome variation in islands with genes encoding functions such as ureases, hydrogenases and B-12 cofactor metabolite reactions may reflect adaptations to colonizing specific host habitats. CONCLUSIONS: Rapid high-quality draft sequencing was used successfully to compare pathogenic and non-pathogenic members of the Yersinia genus. This work underscores the importance of the acquisition of horizontally transferred genes in the evolution of Y. pestis and points to virulence determinants that have been gained and lost on multiple occasions in the history of the genus.


Subject(s)
Genome, Bacterial , Yersinia/genetics , Chromosome Mapping/methods , Cluster Analysis , Genetic Techniques , Genetic Variation , Multigene Family , Phylogeny , Sequence Analysis, DNA , Species Specificity , Virulence , Yersinia enterocolitica/genetics , Yersinia pestis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...