Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Nephrol ; 32(1): 121-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22365170

ABSTRACT

Cardio-Renal syndrome (CRS) is a common and complex clinical condition in which multiple causative factors are involved. The time window between renal insult and development of acute kidney injury (AKI) in acute heart failure (AHF) can be varied in different patients and AKI often is diagnosed too late, only when the effects of the insult become evident with a loss or decline of renal function. For this reason, pharmaceutical interventions for AKI that have been shown to be renoprotective or beneficial when tested in experimental conditions do not display similar results in the clinical setting. In most cases patients with AHF are admitted with clinical signs and symptoms of congestion and fluid overload. Loop diuretics, typically used to induce an enhanced diuresis in these congested patients, often are associated with a subsequent significant decrease in glomerular filtration rate and cause a creatinine increase that is apparent within 72 hours. Early detection of AKI is not possible with the use of serum creatinine and there is a need for a timely diagnostic tool able to address renal damage while it is happening. We need to define the diagnosis of both AHF and AKI in the early phases of CRS type 1 by coupling a kidney damage marker such as neutrophil gelatinase-associated lipocalin (NGAL) with B-type natriuretic peptide (BNP). Indeed, it would be ideal to make available a panel including whole blood or plasma cardiac and renal biomarkers building specific, pathophysiologically based, molecular profiles. Based on current knowledge and consensus, we can use kidney damage biomarkers such as plasma NGAL for an early diagnosis of AKI. However, differences in individual patient values and uncertainties about the ideal cut-off values may currently limit the application of these biomarkers. We propose that NGAL may increase its usefulness in the diagnosis and prevention of CRS if a curve of plasma values rather than a single plasma measurement is determined. To apply the concept of measuring an NGAL curve in AHF patients, however, assay performance in the lower-range values becomes a critical factor. For this reason, we propose the use of the new extended-range plasma NGAL assay that may contribute to remarkably improve the sensitivity of AKI diagnosis in AHF and lead to more effective intervention strategies.


Subject(s)
Acute Kidney Injury/blood , Cardio-Renal Syndrome/blood , Lipocalins/blood , Proto-Oncogene Proteins/blood , Acute Kidney Injury/diagnosis , Acute-Phase Proteins , Biomarkers/blood , Cardio-Renal Syndrome/diagnosis , Early Diagnosis , Humans , Lipocalin-2 , Natriuretic Peptide, Brain/blood
2.
J Biol Chem ; 280(2): 1346-53, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15528182

ABSTRACT

Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Nucleotides/metabolism , Protein Folding , Sequence Deletion/genetics , Amino Acid Sequence , Binding Sites , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Denaturation , Protein Renaturation , Protein Structure, Tertiary , Solubility
3.
J Biol Chem ; 279(53): 55827-32, 2004 Dec 31.
Article in English | MEDLINE | ID: mdl-15507431

ABSTRACT

Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase required for signaling from immunoreceptors in various hematopoietic cells. Phosphorylation of two tyrosine residues in the activation loop of the Syk kinase catalytic domain is necessary for signaling, a phenomenon typical of tyrosine kinase family members. Syk in vitro enzyme activity, however, does not depend on phosphorylation (activation loop tyrosine --> phenylalanine mutants retain catalytic activity). We have determined the x-ray structure of the unphosphorylated form of the kinase catalytic domain of Syk. The enzyme adopts a conformation of the activation loop typically seen only in activated, phosphorylated tyrosine kinases, explaining why Syk does not require phosphorylation for activation. We also demonstrate that Gleevec (STI-571, Imatinib) inhibits the isolated kinase domains of both unphosphorylated Syk and phosphorylated Abl with comparable potency. Gleevec binds Syk in a novel, compact cis-conformation that differs dramatically from the binding mode observed with unphosphorylated Abl, the more Gleevec-sensitive form of Abl. This finding suggests the existence of two distinct Gleevec binding modes: an extended, trans-conformation characteristic of tight binding to the inactive conformation of a protein kinase and a second compact, cis-conformation characteristic of weaker binding to the active conformation. Finally, the Syk-bound cis-conformation of Gleevec bears a striking resemblance to the rigid structure of the nonspecific, natural product kinase inhibitor staurosporine.


Subject(s)
Enzyme Precursors/chemistry , Piperazines/pharmacology , Protein-Tyrosine Kinases/chemistry , Pyrimidines/pharmacology , Animals , Benzamides , Binding Sites , Catalysis , Catalytic Domain , Crystallography, X-Ray , Hematopoietic Stem Cells/metabolism , Humans , Hydrogen Bonding , Imatinib Mesylate , Insecta , Intracellular Signaling Peptides and Proteins , Ligands , Models, Molecular , Mutation , Phosphorylation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Signal Transduction , Staurosporine/pharmacology , Syk Kinase , X-Rays
4.
Biochemistry ; 42(10): 3105-12, 2003 Mar 18.
Article in English | MEDLINE | ID: mdl-12627978

ABSTRACT

The alpha subunit of bacterial luciferase unfolds and refolds reversibly by a three-state mechanism in urea-containing buffer. It has been proposed that the three-state unfolding of the alpha subunit arises from a stepwise unfolding of a C-terminal folding domain at lower concentrations of urea, followed by unfolding of the N-terminal domain at higher concentrations of urea (Noland, B. W., Dangott, L. J., and Baldwin, T. O. (1999) Biochemistry 38, 16136-16145). The location of an anion binding site in the proposed N-terminal folding domain allowed the folding mechanism to be probed in the context of the intact polypeptide. Anions preferentially stabilized the N-terminal domain in a concentration-dependent manner. The polyvalent anions sulfate and phosphate were found to be more stabilizing than monovalent chloride ion. Cations did not show a similar stabilizing effect, demonstrating that the stabilization was due to the anions alone. The purified N-terminal domain prepared by limited proteolysis and anion exchange chromatography was found to refold cooperatively with a midpoint approximately that of the second unfolding transition of the alpha subunit. Phosphate ion stabilized this fragment to roughly the same extent as it did the alpha subunit. The results presented are consistent with the proposed two-domain folding model and demonstrate that anion binding to the N-terminal folding domain stabilizes the alpha subunit of bacterial luciferase.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Luciferases/chemistry , Luciferases/metabolism , Protein Folding , Protein Subunits/chemistry , Protein Subunits/metabolism , Anions/chemistry , Cations, Monovalent/chemistry , Dimerization , Enzyme Stability , Ligands , Peptide Fragments/chemistry , Phosphates/chemistry , Protein Binding , Protein Structure, Tertiary , Salts/chemistry , Sodium Chloride/chemistry , Sulfates/chemistry , Vibrio/enzymology
5.
Structure ; 10(11): 1569-80, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12429098

ABSTRACT

Lipid A modification with 4-amino-4-deoxy-L-arabinose confers on certain pathogenic bacteria, such as Salmonella, resistance to cationic antimicrobial peptides, including those derived from the innate immune system. ArnB catalysis of amino group transfer from glutamic acid to the 4"-position of a UDP-linked ketopyranose molecule to form UDP-4-amino-4-deoxy-L-arabinose represents a key step in the lipid A modification pathway. Structural and functional studies of the ArnB aminotransferase were undertaken by combining X-ray crystallography with biochemical analyses. High-resolution crystal structures were solved for two native forms and one covalently inhibited form of S. typhimurium ArnB. These structures permitted identification of key residues involved in substrate binding and catalysis, including a rarely observed nonprolyl cis peptide bond in the active site.


Subject(s)
Pyridoxamine/analogs & derivatives , Salmonella typhimurium/enzymology , Transaminases/chemistry , Amino Acid Sequence , Binding Sites , Catalysis , Crystallography, X-Ray , Cycloserine/chemistry , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Mass Spectrometry , Models, Chemical , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Structure, Secondary , Pyridoxamine/chemistry , Sequence Homology, Amino Acid , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...