Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol NMR ; 73(5): 245-260, 2019 May.
Article in English | MEDLINE | ID: mdl-31089943

ABSTRACT

Side chains possess a broader conformational space (compared to the backbone) and are directly affected by intra- and intermolecular interactions, hence their dynamics and the corresponding NMR relaxation data are more sensitive and informative. Nevertheless, transverse relaxation in [Formula: see text] ([Formula: see text] or [Formula: see text]) spin systems is predominantly non-measurable in uniformly [Formula: see text]-labeled proteins due to cross-correlation effects. In the present publication, we propose a number of pulse sequences for accurate and precise measurement of the dipole-dipole transverse cross-correlated relaxation rate [Formula: see text], which, similarly to [Formula: see text] measurements, provides information about the amplitudes of intramolecular dynamics. The suggested approach has allowed us to circumvent a number of obstacles that were limiting earlier applications of [Formula: see text]: (1) impossibility of transmission of the central component of the triplet of [Formula: see text] group to [Formula: see text]-acquisition via INEPT has been solved by transmission of the averaged signal of "inner" and "outer" components of the triplet; (2) direct recording of the entire triplets resulting in substantial overlap of side chain signals has been replaced by recording of individual singlets with the use of [Formula: see text]-modulated approach and constant-time evolution; (3) low sensitivity has been enhanced via proton acquisition which required special attention to a zero-quantum coherence evolution. The proposed method expands the set of "dynamics sensors" covering protein side chains and substantially improves the quality and the level of detail of experimental data describing dynamic processes in proteins and protein complexes.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry
2.
J Biol Chem ; 286(28): 25145-53, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21561864

ABSTRACT

This study presents purification, activity characterization, and (1)H NMR study of the novel antifungal peptide EcAMP1 from kernels of barnyard grass Echinochloa crus-galli. The peptide adopts a disulfide-stabilized α-helical hairpin structure in aqueous solution and thus represents a novel fold among naturally occurring antimicrobial peptides. Micromolar concentrations of EcAMP1 were shown to inhibit growth of several fungal phytopathogens. Confocal microscopy revealed intensive EcAMP1 binding to the surface of fungal conidia followed by internalization and accumulation in the cytoplasm without disturbance of membrane integrity. Close spatial structure similarity between EcAMP1, the trypsin inhibitor VhTI from seeds of Veronica hederifolia, and some scorpion and cone snail toxins suggests natural elaboration of different functions on a common fold.


Subject(s)
Antifungal Agents/chemistry , Echinochloa/chemistry , Peptides/chemistry , Plant Proteins/chemistry , Antifungal Agents/pharmacology , Fungi/growth & development , Peptides/pharmacology , Plant Diseases/microbiology , Plant Proteins/pharmacology , Protein Structure, Secondary
3.
J Mol Biol ; 367(4): 1079-92, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17306298

ABSTRACT

NMR spectroscopy and computer simulations were used to examine changes in chemical shifts and in dynamics of the ribonuclease barnase that result upon binding to its natural inhibitor barstar. Although the spatial structures of free and bound barnase are very similar, binding results in changes of the dynamics of both fast side-chains, as revealed by (2)H relaxation measurements, and NMR chemical shifts in an extended beta-sheet that is located far from the binding interface. Both side-chain dynamics and chemical shifts are sensitive to variations in the ensemble populations of the inter-converting molecular states, which can escape direct structural observation. Molecular dynamics simulations of free barnase and barnase in complex with barstar, as well as a normal mode analysis of barnase using a Gaussian network model, reveal relatively rigid domains that are separated by the extended beta-sheet mentioned above. The observed changes in NMR parameters upon ligation can thus be rationalized in terms of changes in inter-domain dynamics and in populations of exchanging states, without measurable structural changes. This provides an alternative model for the propagation of a molecular response to ligand binding across a protein that is based exclusively on changes in dynamics.


Subject(s)
Bacterial Proteins/metabolism , Computer Simulation , Nuclear Magnetic Resonance, Biomolecular , Ribonucleases/chemistry , Ribonucleases/metabolism , Models, Molecular , Protein Conformation , Protein Structure, Tertiary
4.
Proteins ; 46(3): 250-8, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11835500

ABSTRACT

The wealth of data accumulated on the bacterial ribonuclease barnase is complemented by molecular dynamics trajectories starting from four different experimental structures and covering a total of >10 ns. Using principal component analysis, the simulations are interpreted in view of dynamic domains and hinges promoting relative motions of these domains. Two domains with residues 7-22 and 52-108 for the first domain and residues 25-51 for the second domain were consistently observed. Hinge regions consist primarily of Tyr24, Ser50, Ile51, and Gly52. Earlier mutation studies have demonstrated that the residues of the hinge regions play essential roles for the stability and activity of barnase. The domain motions are correlated to inter-domain interactions involving functionally important active site residues, such as Lys27 and Glu73. A model is presented that combines the observation of dynamic domains and their motions with the extensive mutation data from the literature. Enthalpic energy contributions originating from specific inter-domain interactions as well as entropic energy contributions due to the domain motions are discussed in the frame of this model and compared with destabilization energies measured for corresponding mutants.


Subject(s)
Computer Simulation , Ribonucleases/chemistry , Bacterial Proteins , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Structure, Tertiary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...