Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38101762

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant that elicits a wide range of toxic effects in exposed biota. Coastal zones in highly urbanized or industrial areas are particularly vulnerable to PFOS pollution. At present, information is lacking on biomarkers to assess PFOS effects on aquatic wildlife. This study investigated the efficacy of l-carnitine (or carnitine) and fatty acids as biomarkers of PFOS exposure in aquatic biota. The levels of PFOS, total and free carnitine, and 24 fatty acids (measured as fatty acid methyl esters or FAMEs) were measured in the liver, and muscle or blubber, of fish and dolphins sampled from Galveston Bay and the northern Gulf of Mexico (nGoM). Overall, bottlenose dolphins (Tursiops truncatus) had the highest hepatic PFOS levels. Galveston Bay fish, gafftopsail catfish (Bagre marinus), red drum (Sciaenops ocellatus), and spotted seatrout (Cynoscion nebulosus), had hepatic PFOS levels ∼8-13× higher than nGoM pelagic fish species, red snapper (Lutjanus campechanus) and yellowfin tuna (Thunnus albacares). The multivariate analysis of PFOS liver body-burdens and biomarkers found carnitine to be a more modal biomarker of PFOS exposure than FAMEs. Significant positive correlation of hepatic PFOS levels with total carnitine was evident for biota from Galveston Bay (fish only), and a significant correlation between PFOS and total and free carnitine was evident for biota from the nGoM (fish and dolphins). Given the essential role of carnitine in mediating fatty acid ß-oxidation, our results suggest carnitine to be a likely candidate biomarker of environmental PFOS exposure and indicative of potential dyslipidemia effects.


Subject(s)
Bottle-Nosed Dolphin , Catfishes , Animals , Gulf of Mexico , Carnitine , Bays , Bottle-Nosed Dolphin/physiology , Biota , Biomarkers , Fatty Acids
2.
Sci Total Environ ; 805: 150361, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34818778

ABSTRACT

The use of aqueous film forming foams (AFFFs) as fire retardants is an critical point-source for per- and polyfluoroalkyl substances (PFASs) pollution into the aquatic environment. This study investigated PFASs pollution in the surface waters and biota (shellfish and fish) of Galveston Bay, following AFFFs use to extinguish a petrochemical fire (March 17th to 20th, 2019) of oil storage tanks at the International Terminals Company (ITC) in Deer Park (Houston, TX). The levels of up to twelve EPA priority PFASs were measured in surface waters and biota from March-November 2019. PFASs levels in surface waters showed mean total levels in March and April 2019 to be from 4× to ~300× higher than those measured in the following months. PFOS (perfluorooctanesulfonic acid) was the most abundant homolog measured at ≥66% of total PFASs. Maximal PFOS levels exceeded the State of Texas' water regulatory limit of 0.6 µg L-1 in 3% of the samples analyzed in March and April 2019. PFOS was also the most prominent homolog (≥66% of total PFASs) measured in eastern oysters (Crassostrea virginica), red drum (Sciaenops ocellatus), gafftopsail catfish (Bagre marinus), and spotted seatrout (Cynoscion nebulosus). A statistically significant elevation of PFOS body-burdens was measured in oysters and spotted seatrout in April and May 2019, respectively. A Hazard Ratio calculation for seafood safety suggests an advisory of 1-2 meals per week for gafftopsail catfish and red drum, and 2 meals per week for spotted seatrout to be protective for human exposure to PFOS. The levels in oysters indicated no immediate concerns for the dietary exposure of humans. Our results highlight a need for continual monitoring to assess the long-term fate and seafood advisories for PFASs.


Subject(s)
Alkanesulfonic Acids , Deer , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Bays , Biota , Fluorocarbons/analysis , Humans , Seafood , Shellfish , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL