Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 154(3): 1735-1745, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37712751

ABSTRACT

A two-month-long glider deployment in the Gulf of St. Lawrence, Canada, measured the ambient sound level variability with depth and lateral position across a narrow channel that serves as an active commercial shipping corridor. The Honguedo Strait between the Gaspé Peninsula and Anticosti Island has a characteristic sound channel during the Summer and Fall due to temperature variation with depth. The experiment comprised continuous acoustic measurements in the band 1-1000 Hz and oceanographic (temperature and salinity) measurements from a profiling electric glider down to 210 m water depth. The mean observed ambient sound depth-profile was modeled by placing a uniform distribution of sources near the surface to represent a homogeneous wind-generated ocean wave field and computing the acoustic field using normal modes. The measurements and predictions match within the observed error bars and indicate a minimum in the sound channel at 70 m depth and a relative increase by ∼1 dB down to 180 m depth for frequencies >100 Hz. The impact of detector depth, the distance to a busy shipping corridor, wind noise, flow noise, and self-noise are discussed in the context of passive acoustic monitoring and marine mammal detection.

2.
Mar Pollut Bull ; 178: 113596, 2022 May.
Article in English | MEDLINE | ID: mdl-35385819

ABSTRACT

This introduction to a special issue on approaches to managing underwater noise in Canada provides a brief overview of recent efforts to better understand and reduce anthropogenic underwater noise. Recent programs have aimed to increase understanding of anthropogenic noise in the habitats of highly endangered whales and have supported management actions such as vessel slow downs. Technical workshops have advanced the development of quiet ship design and associated technologies. Collaborative research examined noise levels in the St. Lawrence Estuary and the Arctic Ocean. Efforts to better manage noise have gone beyond shipping: enhanced mitigation measures have been put in place for naval exercises near habitats used by southern resident killer whales, while other work has focused on the identification of appropriate metrics for measuring noise. To coordinate and advance these and other efforts, the Government of Canada is developing a national Ocean Noise Strategy.


Subject(s)
Noise , Whale, Killer , Animals , Canada , Ships , Whales
3.
Mar Pollut Bull ; 175: 113361, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35077924

ABSTRACT

Anthropogenic underwater noise has been identified as a potentially serious stressor for the critically endangered North Atlantic right whale (NARW). The Government of Canada is undertaking steps to better characterize the noise sources of most concern and their associated impacts, but there is currently an insufficient understanding of which noise sources are most impacting NARW in their Canadian habitat. This knowledge gap together with the myriad possible methods and metrics for quantifying underwater noise presents a confounding and challenging problem that risks delaying timely mitigation. This study presents the results from a 2020 workshop aimed at developing a series of metrics recommended specifically for better characterizing the types of noise deemed of greatest concern for NARW in Canadian waters. The recommendations provide a basis for more targeted research on noise impacts and set the stage for more effective management and protection of NARW, with potential conservation applications to similar species.


Subject(s)
Benchmarking , Whales , Animals , Atlantic Ocean , Canada , Ecosystem , Noise
4.
Mar Pollut Bull ; 174: 113124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34915419

ABSTRACT

The habitat of the endangered southern resident killer whale (SRKW) overlaps major international shipping lanes near the Port of Vancouver, British Columbia. Shipping is a dominant source of underwater noise, which can hinder SRKW key life functions. To reduce environmental pressure on the SRKWs, Vancouver Fraser Port Authority offers incentives for quieter ships. However, the absence of a widely accepted underwater radiated noise (URN) measurement procedure hinders the determination of relative quietness. We review URN measurement procedures, summarizing results to date from two Canadian-led projects aimed at improving harmonization of shallow-water URN measurement procedures: One supports the International Organization for Standardization (ISO) in the development of a URN measurement standard; the other supports the alignment of URN measurement procedures developed by ship classification societies. Weaknesses in conventional shallow-water URN metrics are identified, and two alternative metrics proposed. Optimal shallow-water measurement geometry is identified.


Subject(s)
Noise , Whale, Killer , Animals , British Columbia , Ecosystem , Ships
SELECTION OF CITATIONS
SEARCH DETAIL
...