Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 242: 126622, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33099234

ABSTRACT

The increasing interest in products with functional properties has encouraged the search for new lactic acid bacteria (LAB) present in natural sources, as traditional fermented foods. In this study, a large set of wild LAB isolates (n = 220) from Brazilian artisanal cheeses (BAC) were assessed for their probiotic and biopreservation potential. First, the rational selection was performed. From the tested isolates, 92 (41.8 %) were resistant to low pH (2 and 3). These isolates were submitted to bile salt (0.4 % Oxgall powder) resistance, and 22 were selected and submitted to adhesion assays. The autoaggregation values ranged from 68.5-99% and were considered moderate to high (20-70 %). Hydrophobicity values varied significantly between LAB (5.0-64.3%), and seven isolates presented values higher than 40 %. All selected LAB (n=22) were capable of adhering to Caco-2 (> 70 %) cells, and none isolate displayed any tested gene for biogenic amine production. Most isolates (18/22) showed less than 1 log CFU reduction after passage through the simulated gastrointestinal tract (GIT) conditions. A total of twenty isolates satisfied key in vitro criteria to be considered as probiotics. A hierarchical cluster analysis (HCA) was performed, and two clusters were observed, showing high variability between Lactobacillus plantarum isolates regarding adhesion properties and survival to GIT stress and one influence of the source of isolation on these properties. After screening, the antimicrobial activity of Lb. plantarum (1QB77) was tested in microcheeses in which survival of two relevant pathogenic bacteria (Staphylococcus aureus and Listeria monocytogenes) was monitored along ripening and after a simulated GIT passage, concomitantly. L. plantarum (1QB77) has shown the ability to reach high counts (∼ 9 log CFU/g) at the end of ripening. This isolate was also able to reduce counts of S. aureus and L. monocytogenes in microcheeses in approx. 2.3 and 2.5 log CFU/g, respectively, until the 21st day of ripening; and about 3.2 and 3.5 log CFU/g after simulated GIT passage. Overall, the assessment of the probiotic properties of a large set of LAB was fundamental for gaining insights on the technological, functional, and potential regional traits of wild LAB isolates that can be used to develop starter cultures for tailored applications.


Subject(s)
Cheese/microbiology , Food Microbiology , Lactobacillales/isolation & purification , Lactobacillales/physiology , Probiotics/isolation & purification , Anti-Infective Agents/pharmacology , Bacterial Adhesion , Bile Acids and Salts , Brazil , Caco-2 Cells , Fermented Foods , Food Preservation , Gastrointestinal Tract/microbiology , Humans , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Lactobacillus plantarum , Listeria monocytogenes , Mass Screening , Probiotics/pharmacology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...