Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Toxicology ; : 153878, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972446

ABSTRACT

The use of synthetic cannabinoid receptor agonists (SCRAs) represents a public health concern. Besides abuse liability and cognitive impairments, SCRA consumption is associated with serious medical consequences in humans, including cardiotoxicity. The precise mechanisms underlying cardiac or other toxicities induced by SCRAs are not well understood. Here, we used in silico, in vivo, and ex vivo approaches to investigate the toxicological consequences induced by exposure to the SCRA JWH-018. Along with in silico predictive toxicological screening of 36 SCRAs by MC4PC software, adult male Sprague-Dawley rats were repeatedly exposed to JWH-018 (0.25mg/kg ip) for 14 consecutive days, with body temperature and cardiovascular parameters measured over the course of treatment. At 1 and 7 days after JWH-018 discontinuation, multiorgan tissue pathologies and heart mitochondria bioenergetics were assessed. The in silico findings predicted risk of cardiac adverse effects specifically for JWH-018 and other aminoalkylindole SCRAs (i.e., electrocardiogram abnormality and QT prolongation). The results from rats revealed that repeated, but not single, JWH-018 exposure induced hypothermia and cardiovascular stimulation (e.g., increased blood pressure and heart rate) which persisted throughout treatment. Post-mortem findings demonstrated cardiac lesions (i.e., vacuolization, waving, edema) 1 day after JWH-018 discontinuation, which may contribute to lungs, kidneys, and liver tissue degeneration observed 7 days later. Importantly, repeated JWH-018 exposure induced mitochondrial dysfunction in cardiomyocytes, i.e., defective lipid OXPHOS, which may represent one mechanism of JWH-018-induced toxicity. Our results demonstrate that repeated administration of even a relatively low dose of JWH-018 is sufficient to affect cardiovascular function and induce enduring toxicological consequences, pointing to risks associated with SCRA consumption.

2.
Biomedicines ; 11(12)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38137370

ABSTRACT

The use of hypoxic devices among athletes who train in normobaric hypoxia has become increasingly popular; however, the acute effects on heart and brain metabolism are not yet fully understood. This study aimed to investigate the mitochondrial bioenergetics in trained male and female Wistar rats after acute hypoxia training. The experimental plan included exercising for 30 min on a treadmill in a Plexiglas cage connected to a hypoxic generator set at 12.5% O2 or in normoxia. After the exercise, the rats were sacrificed, and their mitochondria were isolated from their brains and hearts. The bioenergetics for each complex of the electron transport chain was tested using a Clark-type electrode. The results showed that following hypoxia training, females experienced impaired oxidative phosphorylation through complex II in heart subsarcolemmal mitochondria, while males had an altered ADP/O in heart interfibrillar mitochondria, without any change in oxidative capacity. No differences from controls were evident in the brain, but an increased electron transport system efficiency was observed with complex I and IV substrates in males. Therefore, the study's findings suggest that hypoxia training affects the heart mitochondria of females more than males. This raises a cautionary flag for female athletes who use hypoxic devices.

3.
J Anat ; 242(2): 146-152, 2023 02.
Article in English | MEDLINE | ID: mdl-36176196

ABSTRACT

The hormone melatonin was initially believed to be synthesized exclusively by the pineal gland and the enterochromaffin cells, but nowadays its production and distribution were observed in several other tissues and organs. Among others, the ultrastructural localization of melatonin and its receptors has been reported in human salivary glands. In these glands, the fine localization of melatonin in intracellular organelles, above all in mitochondria, remains to be explored comprehensively. Bioptic samples of parotid and submandibular glands were treated to search for melatonin using the immunogold staining method by transmission electron microscopy. Morphometric analysis was applied to micrographs. The results indicated that, both in parotid and submandibular glands mitochondria, a certain melatonin positivity was present. Within glandular cells, melatonin was less retrieved in mitochondria than in secretory granules; however, its presence in this organelle was clearly evident. Inside striated duct cells, melatonin staining in mitochondria was more prominent than in glandular cells. Our data provide an ultrastructural report on the presence of melatonin in mitochondria of human major salivary glands and represent a fundamental prerequisite for a better understanding of the melatonin role in this organelle.


Subject(s)
Melatonin , Humans , Salivary Glands/metabolism , Parotid Gland/ultrastructure , Submandibular Gland/metabolism , Mitochondria
SELECTION OF CITATIONS
SEARCH DETAIL
...