Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 14(11)2022 11 18.
Article in English | MEDLINE | ID: mdl-36422975

ABSTRACT

Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.


Subject(s)
Staphylococcus aureus , Superantigens , Humans , Animals , Cattle , Enterotoxins , Exotoxins , Staphylococcus , Immunity
2.
PLoS One ; 16(1): e0245679, 2021.
Article in English | MEDLINE | ID: mdl-33507968

ABSTRACT

The yeast Spf1p protein is a primary transporter that belongs to group 5 of the large family of P-ATPases. Loss of Spf1p function produces ER stress with alterations of metal ion and sterol homeostasis and protein folding, glycosylation and membrane insertion. The amino acid sequence of Spf1p shows the characteristic P-ATPase domains A, N, and P and the transmembrane segments M1-M10. In addition, Spf1p exhibits unique structures at its N-terminus (N-T region), including two putative additional transmembrane domains, and a large insertion connecting the P domain with transmembrane segment M5 (D region). Here we used limited proteolysis to examine the structure of Spf1p. A short exposure of Spf1p to trypsin or proteinase K resulted in the cleavage at the N and C terminal regions of the protein and abrogated the formation of the catalytic phosphoenzyme and the ATPase activity. In contrast, limited proteolysis of Spf1p with chymotrypsin generated a large N-terminal fragment containing most of the M4-M5 cytosolic loop, and a minor fragment containing the C-terminal region. If lipids were present during chymotryptic proteolysis, phosphoenzyme formation and ATPase activity were preserved. ATP slowed Spf1p proteolysis without detectable changes of the generated fragments. The analysis of the proteolytic peptides by mass spectrometry and Edman degradation indicated that the preferential chymotryptic site was localized near the cytosolic end of M5. The susceptibility to proteolysis suggests an unexpected exposure of this region of Spf1p that may be an intrinsic feature of P5A-ATPases.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Cell Membrane/enzymology , Proteolysis , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , ATP-Binding Cassette Transporters/metabolism , Protein Domains , Saccharomyces cerevisiae Proteins/metabolism
3.
Front Immunol ; 11: 1279, 2020.
Article in English | MEDLINE | ID: mdl-32695105

ABSTRACT

Chagas disease is an endemic chronic parasitosis in Latin America affecting more than 7 million people. Around 100 million people are currently at risk of acquiring the infection; however, no effective vaccine has been developed yet. Trypanosoma cruzi is the etiological agent of this parasitosis and as an intracellular protozoan it can reside within different tissues, mainly muscle cells, evading host immunity and allowing progression towards the chronic stage of the disease. Considering this intracellular parasitism triggers strong cellular immunity that, besides being necessary to limit infection, is not sufficient to eradicate the parasite from tissues, a differential immune response is required and new strategies for vaccines against Chagas disease need to be explored. In this work, we designed, cloned and expressed a chimeric molecule, named NCz-SEGN24A, comprising a parasite antigen, the N-terminal domain of the major cysteine protease of T. cruzi, cruzipain (Nt-Cz), and a non-toxic form of the staphylococcal superantigen (SAg) G, SEG, with the residue Asn24 mutated to Ala (N24A). The mutant SAg SEGN24A, retains its ability to trigger classical activation of macrophages without inducing T cell apoptosis. To evaluate, as a proof of concept, the immunogenicity and efficacy of the chimeric immunogen vs. its individual antigens, C3H mice were immunized intramuscularly with NCz-SEGN24A co-adjuvanted with CpG-ODN, or the recombinant proteins Nt-Cz plus SEGN24A with the same adjuvant. Vaccinated mice significantly produced Nt-Cz-specific IgG titers after immunization and developed higher IgG2a than IgG1 titers. Specific cell-mediated immunity was assessed by in-vivo DTH and significant responses were obtained. To assess protection, mice were challenged with trypomastigotes of T. cruzi. Both schemes reduced the parasite load throughout the acute phase, but only mice immunized with NCz-SEGN24A showed significant differences against control; moreover, these mice maintained 100% survival. These results encourage testing mutated superantigens fused to specific antigens as immune modulators against pathogens.


Subject(s)
Antigens, Bacterial/immunology , Chagas Disease/prevention & control , Cross Protection/immunology , Cysteine Endopeptidases/immunology , Protozoan Proteins/immunology , Superantigens/immunology , Trypanosoma cruzi/immunology , Animals , Antibodies, Neutralizing , Antibodies, Protozoan/immunology , Antigens, Bacterial/chemistry , Antigens, Bacterial/genetics , Antigens, Protozoan/immunology , Chagas Disease/immunology , Chagas Disease/parasitology , Cysteine Endopeptidases/genetics , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Immunization , Mice , Parasite Load , Protein Conformation , Protein Domains/immunology , Protozoan Proteins/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Superantigens/chemistry , Superantigens/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Am J Pathol ; 190(9): 1789-1800, 2020 09.
Article in English | MEDLINE | ID: mdl-32473918

ABSTRACT

We studied the role of galectin-3 (Gal-3) in the expression of alternative activation markers (M2) on macrophage, cytokines, and fibrosis through the temporal evolution of healing, ventricular remodeling, and function after myocardial infarction (MI). C57BL/6J and Gal-3 knockout mice (Lgals3-/-) were subjected to permanent coronary ligation or sham. We studied i) mortality, ii) macrophage infiltration and expression of markers of alternative activation, iii) cytokine, iv) matrix metalloproteinase-2 activity, v) fibrosis, and vi) cardiac function and remodeling. At 1 week post-MI, lack of Gal-3 markedly attenuated F4/80+ macrophage infiltration and significantly increased the expression of Mrc1 and Chil1, markers of M2 macrophages at the MI zone. Levels of IL-10, IL-6, and matrix metalloproteinase-2 were significantly increased, whereas tumor necrosis factor-α, transforming growth factor-ß, and fibrosis were remarkably attenuated at the infarct zone. In Gal-3 knockout mice, scar thinning ratio, expansion, and cardiac remodeling and function were severely affected from the onset of MI. At 4 weeks post-MI, the natural evolution of fibrosis in Gal-3 knockout mice was also affected. Our results suggest that Gal-3 is essential for wound healing because it regulates the dynamics of macrophage infiltration, proinflammatory and anti-inflammatory cytokine expression, and fibrosis along the temporal evolution of MI in mice. The deficit of Gal-3 affected the dynamics of wound healing, thus aggravating the evolution of remodeling and function.


Subject(s)
Galectin 3/metabolism , Macrophages/pathology , Myocardial Infarction/pathology , Ventricular Remodeling/physiology , Wound Healing/physiology , Animals , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/metabolism
5.
Front Immunol ; 10: 3008, 2019.
Article in English | MEDLINE | ID: mdl-32010128

ABSTRACT

Bacterial superantigens (SAgs) are enterotoxins that bind to MHC-II and TCR molecules, activating as much as 20% of the T cell population and promoting a cytokine storm which enhances susceptibility to endotoxic shock, causing immunosuppression, and hindering the immune response against bacterial infection. Since monocytes/macrophages are one of the first cells SAgs find in infected host and considering the effect these cells have on directing the immune response, here, we investigated the effect of four non-classical SAgs of the staphylococcal egc operon, namely, SEG, SEI, SEO, and SEM on monocytic-macrophagic cells, in the absence of T cells. We also analyzed the molecular targets on APCs which could mediate SAg effects. We found that egc SAgs depleted the pool of innate immune effector cells and induced an inefficient activation of monocytic-macrophagic cells, driving the immune response to an impaired proinflammatory profile, which could be mediated directly or indirectly by interactions with MHC class II. In addition, performing surface plasmon resonance assays, we demonstrated that non-classical SAgs bind the gp130 molecule, which is also present in the monocytic cell surface, among other cells.


Subject(s)
Antigens, Bacterial/immunology , Macrophages/immunology , Monocytes/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Superantigens/immunology , Animals , Antigens, Bacterial/genetics , Cell Death , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Macrophages/cytology , Mice , Mice, Inbred BALB C , Monocytes/cytology , Operon , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/physiopathology , Staphylococcus aureus/genetics , Superantigens/genetics
6.
Biochem J ; 474(1): 179-194, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27831490

ABSTRACT

Natural killer (NK) cells are lymphocytes of the innate immune system that eliminate virally infected or malignantly transformed cells. NK cell function is regulated by diverse surface receptors that are both activating and inhibitory. Among them, the homodimeric Ly49 receptors control NK cell cytotoxicity by sensing major histocompatibility complex class I molecules (MHC-I) on target cells. Although crystal structures have been reported for Ly49/MHC-I complexes, the underlying binding mechanism has not been elucidated. Accordingly, we carried out thermodynamic and kinetic experiments on the interaction of four NK Ly49 receptors (Ly49G, Ly49H, Ly49I and Ly49P) with two MHC-I ligands (H-2Dd and H-2Dk). These Ly49s embrace the structural and functional diversity of the highly polymorphic Ly49 family. Combining surface plasmon resonance, fluorescence anisotropy and far-UV circular dichroism (CD), we determined that the best model to describe both inhibitory and activating Ly49/MHC-I interactions is one in which the two MHC-I binding sites of the Ly49 homodimer present similar binding constants for the two sites (∼106 M-1) with a slightly positive co-operativity in some cases, and without far-UV CD observable conformational changes. Furthermore, Ly49/MHC-I interactions are diffusion-controlled and enthalpy-driven. These features stand in marked contrast with the activation-controlled and entropy-driven interaction of Ly49s with the viral immunoevasin m157, which is characterized by strong positive co-operativity and conformational selection. These differences are explained by the distinct structures of Ly49/MHC-I and Ly49/m157 complexes. Moreover, they reflect the opposing roles of NK cells to rapidly scan for virally infected cells and of viruses to escape detection using immunoevasins such as m157.


Subject(s)
Histocompatibility Antigen H-2D/chemistry , Multiprotein Complexes/chemistry , NK Cell Lectin-Like Receptor Subfamily A/chemistry , Animals , Histocompatibility Antigen H-2D/genetics , Histocompatibility Antigen H-2D/immunology , Kinetics , Mice , Mice, Inbred BALB C , Multiprotein Complexes/genetics , Multiprotein Complexes/immunology , NK Cell Lectin-Like Receptor Subfamily A/genetics , NK Cell Lectin-Like Receptor Subfamily A/immunology , Surface Plasmon Resonance , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...