Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862537

ABSTRACT

We present a laser-driven, bright, and broadband (50 to 1500 eV) soft-x-ray plasma source with <10 ps pulse duration. This source is employed in two complementary, laboratory-scale beamlines for time-resolved, magnetic resonant scattering and spectroscopy, as well as near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. In both beamlines, dedicated reflection zone plates (RZPs) are used as single optical elements to capture, disperse, and focus the soft x rays, reaching resolving powers up to E/ΔE > 1000, with hybrid RZPs at the NEXAFS beamline retaining a consistent E/ΔE > 500 throughout the full spectral range, allowing for time-efficient data acquisition. We demonstrate the versatility and performance of our setup by a selection of soft-x-ray spectroscopy and scattering experiments, which so far have not been possible on a laboratory scale. Excellent data quality, combined with experimental flexibility, renders our approach a true alternative to large-scale facilities, such as synchrotron-radiation sources and free-electron lasers.

2.
Struct Dyn ; 10(2): 024301, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36970496

ABSTRACT

We present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds timescale. Controlling the heat load on the sample via additional reflector and heatsink layers allows us to conduct destruction-free measurements at a repetition rate of 50 MHz. Near-field enhancement of the photo-excitation and controlled annealing effects lead to laterally heterogeneous magnetization dynamics which we trace with 30 nm spatial resolution. Our work opens new opportunities to study photo-induced dynamics on the nanometer scale, with access to picosecond to nanosecond time scales, which is of technological relevance, especially in the field of magnetism.

3.
Rev Sci Instrum ; 88(5): 053903, 2017 May.
Article in English | MEDLINE | ID: mdl-28571434

ABSTRACT

A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.

4.
Rev Sci Instrum ; 87(5): 051904, 2016 05.
Article in English | MEDLINE | ID: mdl-27250376

ABSTRACT

The ultimate performance of surface slope metrology instrumentation, such as long trace profilers and auto-collimator based deflectometers, is limited by systematic errors that are increased when the entire angular range is used for metrology of significantly curved optics. At the ALS X-Ray Optics Laboratory, in collaboration with the HZB/BESSY-II and PTB (Germany) metrology teams, we are working on a calibration method for deflectometers, based on a concept of a universal test mirror (UTM) [V. V. Yashchuk et al., Proc. SPIE 6704, 67040A (2007)]. Potentially, the UTM method provides high performance calibration and accounts for peculiarities of the optics under test (e.g., slope distribution) and the experimental arrangement (e.g., the distance between the sensor and the optic under test). At the same time, the UTM calibration method is inherently universal, applicable to a variety of optics and experimental arrangements. In this work, we present the results of tests with a key component of the UTM system, a custom high precision tilt stage, which has been recently developed in collaboration with Physik Instrumente, GmbH. The tests have demonstrated high performance of the stage and its capability (after additional calibration) to provide angular calibration of surface slope measuring profilers over the entire instrumental dynamic range with absolute accuracy better than 30 nrad. The details of the stage design and tests are presented. We also discuss the foundation of the UTM method and calibration algorithm, as well as the possible design of a full scale UTM system.

SELECTION OF CITATIONS
SEARCH DETAIL
...