Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 316(Pt 1): 120569, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36347413

ABSTRACT

It is a well - established fact that road traffic is one of the main contributors to ambient levels of airborne particulate matter (APM). This study was carried out at a traffic site in which the PM10 levels are monitored all year round. A trend analysis of these levels revealed that over a decade there was no discernible trend, with the PM10 concentrations normally hovering around the EU limit values. In 2018, one of these limit values was exceeded. The contribution of traffic at the site was therefore investigated through a chemical speciation of 209 PM10 samples collected throughout this year. The speciation data were used in a source apportionment exercise in which the output of the PMF model was further refined using the lesser-known, constraint weighted non - negative matrix factorization (CW - NMF) model. This technique enabled the isolation of two factors clearly related to traffic, which were labelled as "exhaust contribution" (responsible for 3.4% of the PM10), "tire/brake wear contribution" (contributing 17% of the PM10). Additionally, a factor including both traffic resuspended dust and crustal material was also isolated and labelled "road dust/crustal" factor. The two contributors to the factor jointly contribute 18% to the PM10 and the contribution of the traffic resuspended dust was estimated at 7.3%. The traffic resuspended component of this factor together with the "tire/brake wear contribution" jointly make up the non-exhaust contribution of traffic - derived dust. Consonant with what has been known for quite some time, the exhaust fraction is the minor component of traffic PM10. It is therefore, clear that policies aimed at controlling traffic derived PM10 pollution at the receptor will have a minimal effect unless the non - exhaust emissions are adequately controlled.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Dust/analysis , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Vehicle Emissions/analysis , Europe
2.
J Environ Manage ; 261: 110196, 2020 May 01.
Article in English | MEDLINE | ID: mdl-31999608

ABSTRACT

Over the years, the Maltese Islands have seen a marked rise in the prevalence of artificial lighting at night. The most evident type of light pollution arising from this evolution in anthropogenic night-time lighting is artificial skyglow via partial back-scattering in the atmosphere, leading to an increase in the Night Sky Brightness (NSB). The importance of understanding and quantifying the geographical distribution of the NSB is underscored by the adverse impact of light pollution on various spheres, from astronomical observation to ecology and human health. For the first time, we present a detailed map of the NSB over the Maltese archipelago carried out with Unihedron Sky Quality Meters. We show that the vast majority of the area of the Maltese Islands is heavily light polluted, with 87% of the area registering a NSB < 20.39magSQM/arcsec2 (Bortle Class 5 or higher) and 37.3% < 19.09magSQM/arcsec2 (Bortle Class 6 or higher), with the Milky Way being visible for only 12.8% of the area (adopting a visibility threshold > 20.4 - 21.29magSQM/arcsec2; Bortle Class 4). Coastal Dark Sky Heritage Areas on the island of Gozo retain generally darker skies than the rest of the islands, but light pollution originating further inland is encroaching upon and adversely affecting these sites. The methodology presented in this study can be adopted for continued future studies in Malta as well as for other regions.


Subject(s)
Atmosphere , Environmental Pollution , Ecology , Humans , Islands
SELECTION OF CITATIONS
SEARCH DETAIL
...