Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
BMC Biol ; 19(1): 170, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429103

ABSTRACT

BACKGROUND: Optogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm. RESULTS: The OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm's power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing. CONCLUSION: We have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community.


Subject(s)
Caenorhabditis elegans , Optogenetics , Animals , Caenorhabditis elegans/genetics , Neurons
3.
Int J Tryptophan Res ; 13: 1178646920972657, 2020.
Article in English | MEDLINE | ID: mdl-33447045

ABSTRACT

Alzheimer's disease (AD) is associated with progressive endogenous neurotoxicity and hampered inflammatory regulation. The kynurenine (Kyn) pathway, which is controlled by tryptophan 2,3-dioxygenase (TDO), produces neuroactive and anti-inflammatory metabolites. Age-related Kyn pathway activation might contribute to AD pathology in humans, and inhibition of TDO was found to reduce AD-related cellular toxicity and behavioral deficits in animal models. To further explore the effect of aging on the Kyn pathway in the context of AD, we analyzed Kyn metabolite profiles in serum and brain tissue of the APP23 amyloidosis mouse model. We found that aging had genotype-independent effects on Kyn metabolite profiles in serum, cortex, hippocampus and cerebellum, whereas serum concentrations of many Kyn metabolites were reduced in APP23 mice. Next, to further establish the role of TDO in AD-related behavioral deficits, we investigated the effect of long-term pharmacological TDO inhibition on cognitive performance in APP23 mice. Our results indicated that TDO inhibition reversed recognition memory deficits without producing measurable changes in cerebral Kyn metabolites. TDO inhibition did not affect spatial learning and memory or anxiety-related behavior. These data indicate that age-related Kyn pathway activation is not specific for humans and could represent a cross-species phenotype of aging. These data warrant further investigation on the role of peripheral Kyn pathway disturbances and cerebral TDO activity in AD pathophysiology.

4.
Proc Natl Acad Sci U S A ; 98(21): 12038-43, 2001 Oct 09.
Article in English | MEDLINE | ID: mdl-11572931

ABSTRACT

Molecular chaperones are involved in the protection of cells against protein damage through their ability to hold, disaggregate, and refold damaged proteins or their ability to facilitate degradation of damaged proteins. Little is known about how these processes are spatially coordinated in cells. Using a heat-sensitive nuclear model protein luciferase fused to the traceable, heat-stable enhanced green fluorescent protein (N-luc-EGFP), we now show that heat inactivation and insolubilization of luciferase were associated with accumulation of N-luc-EGFP at multiple foci throughout the nucleus. Coexpression of Hsp70, one of the major mammalian chaperones, reduced the formation of these small foci during heat shock. Instead, the heat-unfolded N-luc-EGFP accumulated in large, insoluble foci. Immunofluorescence analysis revealed that these foci colocalized with the nucleoli. Time-lapse analysis demonstrated that protein translocation to the nucleolus, in contrast to the accumulation at small foci, was fully reversible upon return to the normal growth temperature. This reversibility was associated with an increase in the level of active and soluble luciferase. Expression of a carboxyl-terminal deletion mutant of Hsp70(1-543), which lacked chaperone activity, had no effect on the localization of N-luc-EGFP, which suggests that the Hsp70 chaperone activity is required for the translocation events. Our data show that Hsp70 not only is involved in holding and refolding of heat-unfolded nuclear proteins but also drives them to the nucleolus during stress. This might prevent random aggregation of thermolabile proteins within the nucleus, thereby allowing their refolding at the permissive conditions and preventing indirect damage to other nuclear components.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Nuclear Proteins/metabolism , Protein Folding , Animals , Cell Line , Cell Nucleus/metabolism , Cricetinae , Detergents , Green Fluorescent Proteins , HSP70 Heat-Shock Proteins/genetics , Heating , Luciferases/genetics , Luciferases/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Octoxynol , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Solubility
5.
J Biol Chem ; 276(7): 4677-82, 2001 Feb 16.
Article in English | MEDLINE | ID: mdl-11076956

ABSTRACT

The chaperone activity of Hsp70 is influenced by the activities of both positive and negative regulatory proteins. In this study, we provide first time evidence for the stimulating effect of the Hsp70-interacting protein Hip on the chaperone activity in the mammalian cytosol. Overexpressing Hip enhances the refolding of the heat-inactivated reporter enzyme luciferase expressed in hamster lung fibroblasts. Also, it protects luciferase from irreversible denaturation under conditions of ATP depletion. We demonstrate that these stimulating actions depend on both the presence of the central Hsp70-binding site and the amino-terminal homo-oligomerization domain of Hip. The carboxyl terminus (amino acids 257-368) comprising the 7 GGMP repeats (Hsc70-like domain) and the Sti1p-like domain are dispensable for the Hip-mediated stimulation of the cellular chaperone activity. Bag-1, which inhibits the Hsp70 chaperone activity both in vitro and in vivo, was found to compete with the stimulatory action of Hip. In cells overexpressing both Hip and Bag-1, the inhibitory effects of Bag-1 were found to be dominant. Our results reveal that in vivo a complex level of regulation of the cellular chaperone activity exists that not only depends on the concentration of Hsp70 but also on the concentration, affinity, and intracellular localization of positive and negative coregulators. As the Hsp70 chaperone machine is also protective in the absence of ATP, our data also demonstrate that cycling between an ATP/ADP-bound state is not absolutely required for the Hsp70 chaperone machine to be active in vivo.


Subject(s)
Carrier Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Tumor Suppressor Proteins , Adenosine Triphosphate/metabolism , Animals , CHO Cells , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , Cricetinae , DNA-Binding Proteins , HSP70 Heat-Shock Proteins/genetics , Luciferases/metabolism , Protein Folding , Protein Structure, Tertiary , Transcription Factors , Transfection
6.
Mol Cell Biol ; 20(3): 1083-8, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10629065

ABSTRACT

Studies on the Hsp70 chaperone machine in eukaryotes have shown that Hsp70 and Hsp40/Hdj1 family proteins are sufficient to prevent protein misfolding and aggregation and to promote refolding of denatured polypeptides. Additional protein cofactors include Hip and Bag1, identified in protein interaction assays, which bind to and modulate Hsp70 chaperone activity in vitro. Bag1, originally identified as an antiapoptotic protein, forms a stoichiometric complex with Hsp70 and inhibits completely Hsp70-dependent in vitro protein refolding of an unfolded polypeptide. Given its proposed involvement in multiple cell signaling events as a regulator of Raf1, Bcl2, or androgen receptor, we wondered whether Bag1 functions in vivo as a negative regulator of Hsp70. In this study, we demonstrate that Bag1, expressed in mammalian tissue culture cells, has pronounced effects on one of the principal activities of Hsp70, as a molecular chaperone essential for stabilization and refolding of a thermally inactivated protein. The levels of Hsp70 and Bag1 were modulated either by transient transfection or conditional expression in stably transfected lines to achieve levels within the range detected in different mammalian tissue culture cell lines. For example, a twofold increase in the concentration of Bag1 reduced Hsp70-dependent refolding of denatured luciferase by a factor of 2. This effect was titratable, and higher levels of wild-type but not a mutant form of Bag1 further inhibited Hsp70 refolding by up to a factor of 5. The negative effects of Bag1 were also observed in a biochemical analysis of Bag1- or Hsp70-overexpressing cells. The ability of Hsp70 to maintain thermally denatured firefly luciferase in a soluble state was reversed by Bag1, thus providing an explanation for the in vivo chaperone-inhibitory effects of Bag1. Similar effects on Hsp70 were observed with other cytoplasmic isoforms of Bag1 which have in common the carboxyl-terminal Hsp70-binding domain and differ by variable-length amino-terminal extensions. These results provide the first formal evidence that Bag1 functions in vivo as a regulator of Hsp70 and suggest an intriguing complexity for Hsp70-regulatory events.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Membrane Proteins , Protein Folding , Transcription Factors/metabolism , Animals , Cell Line , Cricetinae , DNA-Binding Proteins , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/genetics , Humans , Kinetics , Luciferases/genetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Fusion Proteins/metabolism , Transcription Factors/genetics , Transfection
7.
Mol Cell Biol ; 19(3): 2069-79, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10022894

ABSTRACT

Heat shock protein 70 (Hsp70) is thought to play a critical role in the thermotolerance of mammalian cells, presumably due to its chaperone activity. We examined the chaperone activity and cellular heat resistance of a clonal cell line in which overexpression of Hsp70 was transiently induced by means of the tetracycline-regulated gene expression system. This single-cell-line approach circumvents problems associated with clonal variation and indirect effects resulting from constitutive overexpression of Hsp70. The in vivo chaperone function of Hsp70 was quantitatively investigated by using firefly luciferase as a reporter protein. Chaperone activity was found to strictly correlate to the level of Hsp70 expression. In addition, we observed an Hsp70 concentration dependent increase in the cellular heat resistance. In order to study the contribution of the Hsp70 chaperone activity, heat resistance of cells that expressed tetracycline-regulated Hsp70 was compared to thermotolerant cells expressing the same level of Hsp70 plus all of the other heat shock proteins. Overexpression of Hsp70 alone was sufficient to induce a similar recovery of cytoplasmic luciferase activity, as does expression of all Hsps in thermotolerant cells. However, when the luciferase reporter protein was directed to the nucleus, expression of Hsp70 alone was not sufficient to yield the level of recovery observed in thermotolerant cells. In addition, cells expressing the same level of Hsp70 found in heat-induced thermotolerant cells containing additional Hsps showed increased resistance to thermal killing but were more sensitive than thermotolerant cells. These results suggest that the inducible form of Hsp70 contributes to the stress-tolerant state by increasing the chaperone activity in the cytoplasm. However, its expression alone is apparently insufficient for protection of other subcellular compartments to yield clonal heat resistance to the level observed in thermotolerant cells.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Animals , Cell Line , Cell Nucleus/metabolism , Cell Survival , Cricetinae , Cytoplasm/metabolism , Gene Expression Regulation/drug effects , HSP70 Heat-Shock Proteins/genetics , Heating , Humans , Luciferases/metabolism , Temperature , Tetracycline/pharmacology
9.
Cytotechnology ; 23(1-3): 61-75, 1997 Jan.
Article in English | MEDLINE | ID: mdl-22358522

ABSTRACT

The death rate of Vero cells grown on Cytodex-3 microcarrierswas studied as a function of the gas flow rate in a smallair-lift loop reactor. The death rate may be described byfirst-order death-rate kinetics. The first-order death-rateconstant as calculated from the decrease in viable cells, theincrease in dead cells and the increase in LDH activity islinear proportional to the gas flow rate, with a specifichypothetical killing volume in which all cells are killed ofabout 2.10(-3)m(3) liquid per m(3) of air bubbles.In addition, an experiment was conducted in the sameair-lift reactor with Vero cells grown inside porous Asahimicrocarriers. The specific hypothetical killing volumecalculated from this experiment has a value of 3.10(-4)m(3) liquid per m(3) of air bubbles, which shows thatthe porous microcarriers were at least in part able to protectthe cells against the detrimental hydrodynamic forcesgenerated by the bubbles.

10.
Cytotechnology ; 21(1): 45-59, 1996 Jan.
Article in English | MEDLINE | ID: mdl-22358606

ABSTRACT

The death rate of Vero cells grown on Cytodex-3 microcarriers was studied as a function of the gas flow rate in a small air-lift loop reactor. The death rate may be described by first-order death-rate kinetics. The first-order death-rate constant as calculated from the decrease in viable cells, the increase in dead cells and the increase in LDH activity is linear proportional to the gas flow rate, with a specific hypothetical killing volume in which all cells are killed of about 2·10(-3) m(3) liquid per m(3) of air bubbles. In addition, an experiment was conducted in the same air-lift reactor with Vero cells grown inside porous Asahi microcarriers. The specific hypothetical killing volume calculated from this experiment has a value of 3·10(-4) m(3) liquid per m(3) of air bubbles, which shows that the porous microcarriers were at least in part able to protect the cells against the detrimental hydrodynamic forces generated by the bubbles.

11.
J Gen Virol ; 75 ( Pt 11): 3167-76, 1994 Nov.
Article in English | MEDLINE | ID: mdl-7964626

ABSTRACT

We have assessed the functional importance of the NTP-binding motif (NTBM) in the cowpea mosaic virus (CPMV) B-RNA-encoded 58K domain by changing two conserved amino acids within the consensus A and B sites (GKSRTGK500S and MDD545, respectively). Both Lys-500 to Thr and Asp-545 to Pro substitutions are lethal as mutant B-RNAs were no longer replicated in cowpea protoplasts. Transiently produced mutant proteins were not able to support trans-replication of CPMV M-RNA in cowpea protoplasts in contrast to transiently produced wild-type B proteins. Therefore loss of viral RNA synthesis was a result of a protein defect rather than an RNA template defect. Mutant B polyproteins were correctly processed in vitro and in vivo and the regulatory function of the 32K protein on processing of B proteins was not affected by these mutations. Since regulation of processing by the 32K protein depends on interaction with the 58K domain, the mutations in the NTBM apparently do not interfere with this interaction. The Asp-545 to Pro substitution left intact the binding properties of the 84K precursor of the 58K protein, with respect to ATP-agarose, whereas the Lys-500 to Thr substitution decreased the binding capacity of the 84K protein, suggesting that the Lys-500 residue is directly involved in ATP binding. The Lys-500 to Thr substitution in the 58K domain resulted in an altered distribution of viral proteins, which failed to aggregate into large cytopathic structures as observed in protoplasts infected with wild-type B-RNA. However viral proteins containing the Asp-545 to Pro substitution showed a normal distribution in protoplasts.


Subject(s)
Comovirus/physiology , GTP-Binding Proteins/metabolism , Viral Proteins/metabolism , Virus Replication , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Blotting, Northern , Chromatography, Affinity , Comovirus/metabolism , Consensus Sequence , Fabaceae/virology , GTP-Binding Proteins/biosynthesis , Gene Expression , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligodeoxyribonucleotides , Plants, Medicinal , Protoplasts/virology , RNA, Viral/metabolism , Transfection , Viral Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...