Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 11(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37505586

ABSTRACT

Fish is an important source of protein in human meals around the world. However, the fish that we are eating may be contaminated with toxicants such as metals and metalloids (MMs), which may pose health risks to consumers. Information on MMs content in fishes and their potential spatial distribution scenarios would provide knowledge to the community to create strategies and protect human health. Hence, this study assessed and determined the health risk levels of MMs in both brackish and marine water fish (BMF) in Puerto Princesa City (PPC), Palawan Province, Philippines. PPC has an existing abandoned open mine pit near the PPC coastline called the "pit lake". The concentrations of As, Ba, Cu, Fe, Mn, Hg, and Zn in fishes were analyzed using portable Olympus Vanta X-ray Fluorescence (pXRF), and the spatial distribution of MMs concentrations in BMF was analyzed using a GIS (geographic information system). Fishes were sampled from fishing boat landing sites and nearby seafood markets. The results revealed that the concentration of MMs in marine fish was generally higher than the brackish water fish. It was recorded that the Hg concentration in marine water fish meat was higher than in brackish water fish meat. The Mn concentration in marine water fish exceeded the permissible limits set by international bodies. An elevated concentration of Mn in BMF was detected across the northern part of PPC, and an elevated concentration of Hg in marine fishes was recorded in the southeast area, where the fish landing sites are located. Ba was also detected in BMF across the southern part of PPC. Moreover, an elevated concentration of Cu was detected in MBF in the northeast and in marine fish in the southeastern area of PPC. Further, this paper elaborates the non-carcinogenic and carcinogenic risks of these fishes to the PPC population and tourists with respect to the MMs content in fish meat.

2.
Toxics ; 11(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36977051

ABSTRACT

Concentrations of heavy metals (HMs) were assessed in Tilapia spp. from selected communities in Calapan City, Philippines. Eleven (11) inland farmed tilapia samples were collected and analyzed for HMs concentration using X-ray fluorescence (XRF). The 11 fish samples were cut into seven pieces, according to the fish body parts, constituting a total of 77 samples. These fish samples were then labeled as bone, fins, head, meat, skin, and viscera. Results showed that the mean concentration of Cd in all parts of tilapia exceeded the Food and Agriculture Organization/World Health Organization (FAO/WHO) limits. The highest concentration was recorded in the fins, which was sevenfold higher than the limit. The trend of the mean concentration of Cd in different parts of tilapia was fins > viscera > skin > tail > head > meat > bone. The target hazard quotient (THQ) recorded a value less than 1. This means that the population exposed to tilapia, within the area where fish samples originated, were not at risk to non-carcinogens. The concentrations of Cu, Pb, Mn, Hg, and Zn in different parts, particularly in skin, fins, and viscera, also exceeded the FAO/WHO limits. The calculated cancer risk (CR) in consuming the fish skin, meat, fins, bone, viscera, and head was higher than the USEPA limit. This indicated a possible carcinogenic risk when consumed regularly. Most of the correlations observed between HMs in various parts of the tilapia had positive (direct) relationships, which were attributed to the HM toxicity target organ characteristics. Results of the principal component analysis (PCA) showed that most of the dominating HMs recorded in tilapia were attributable to anthropogenic activities and natural weathering within the watershed of agricultural areas. The agriculture area comprises about 86.83% of the overall land area of Calapan City. The identified carcinogenic risks were associated with Cd. Therefore, regular monitoring of HMs in inland fishes, their habitat, and surface water quality shall be carried out. This information is useful in creating strategies in metals concentration monitoring, health risks reduction program, and relevant guidelines that would reduce the accumulation of HM in fish.

3.
Toxics ; 10(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35878248

ABSTRACT

The domestic water (DW) quality of an island province in the Philippines that experienced two major mining disasters in the 1990s was assessed and evaluated in 2021 utilizing the heavy metals pollution index (MPI), Nemerow's pollution index (NPI), and the total carcinogenic risk (TCR) index. The island province sources its DW supply from groundwater (GW), surface water (SW), tap water (TP), and water refilling stations (WRS). This DW supply is used for drinking and cooking by the population. In situ analyses were carried out using an Olympus Vanta X-ray fluorescence spectrometer (XRF) and Accusensing Metals Analysis System (MAS) G1 and the target heavy metals and metalloids (HMM) were arsenic (As), barium (Ba), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn). The carcinogenic risk was evaluated using the Monte Carlo (MC) method while a machine learning geostatistical interpolation (MLGI) technique was employed to create spatial maps of the metal concentrations and health risk indices. The MPI values calculated at all sampling locations for all water samples indicated a high pollution. Additionally, the NPI values computed at all sampling locations for all DW samples were categorized as "highly polluted". The results showed that the health quotient indices (HQI) for As and Pb were significantly greater than 1 in all water sources, indicating a probable significant health risk (HR) to the population of the island province. Additionally, As exhibited the highest carcinogenic risk (CR), which was observed in TW samples. This accounted for 89.7% of the total CR observed in TW. Furthermore, all sampling locations exceeded the recommended maximum threshold level of 1.0 × 10-4 by the USEPA. Spatial distribution maps of the contaminant concentrations and health risks provide valuable information to households and guide local government units as well as regional and national agencies in developing strategic interventions to improve DW quality in the island province.

4.
Article in English | MEDLINE | ID: mdl-35162612

ABSTRACT

This paper investigated the health risks due to metal concentrations in soil and vegetables from the island province in the Philippines and the potential ecological risks. The concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in vegetables and soil in six municipalities of the province were analyzed using the Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Perkin Elmer Optima 8000. It was recorded that all metal concentrations in the soil, except for Cd, exceeded the soil quality standard (SQS). The concentration of Fe and Mn was highest among other metals. The Nemerow synthetical pollution index (Pn) in all soil samples was under Class V which means severe pollution level. Likewise, the risk index (RI) of soil ranged from high to very high pollution risk. Most of the metal concentrations in the vegetables analyzed also exceeded the maximum permissible limit (MPL). All health hazard indices (HHIs) were less than 1, which means potential low non-carcinogenic risk to human population by vegetable consumption. However, it was found that concentration of Cr and Ni in vegetables is a potential health hazard having concentrations exceeding the maximum threshold limit. A 75% temporary consumption reduction of bitter melon, eggplant, sweet potato tops, and string beans produced from two municipalities may be helpful in reducing exposure to target metals. Additional studies are needed to confirm this recommendation. Spatial correlation analysis showed that six out of target metals had datasets that were more spatially clustered than would be expected. The recorded data are useful for creation of research direction, and aid in developing strategies for remediation, tools, and programs for improving environmental and vegetable quality monitoring.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Cities , Environmental Monitoring , Humans , Metals, Heavy/analysis , Philippines , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Vegetables/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...