Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Genome Biol Evol ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37493080

ABSTRACT

Transitions from no parental care to extensive care are costly and involve major changes in life history, behavior, and morphology. Nevertheless, in Sulawesi ricefishes, pelvic brooding evolved from transfer brooding in two distantly related lineages within the genera Adrianichthys and Oryzias, respectively. Females of pelvic brooding species carry their eggs attached to their belly until the fry hatches. Despite their phylogenetic distance, both pelvic brooding lineages share a set of external morphological traits. A recent study found no direct gene flow between pelvic brooding lineages, suggesting independent evolution of the derived reproductive strategy. Convergent evolution can, however, also rely on repeated sorting of preexisting variation of an admixed ancestral population, especially when subjected to similar external selection pressures. We thus used a multispecies coalescent model and D-statistics to identify gene-tree-species-tree incongruencies, to evaluate the evolution of pelvic brooding with respect to interspecific gene flow not only between pelvic brooding lineages but also between pelvic brooding lineages and other Sulawesi ricefish lineages. We found a general network-like evolution in Sulawesi ricefishes, and as previously reported, we detected no gene flow between the pelvic brooding lineages. Instead, we found hybridization between the ancestor of pelvic brooding Oryzias and the common ancestor of the Oryzias species from the Lake Poso area. We further detected signs of introgression within the confidence interval of a quantitative trait locus associated with pelvic brooding in O. eversi. Our results hint toward a contribution of ancient standing genetic variation to the evolution of pelvic brooding in Oryzias.


Subject(s)
Oryzias , Animals , Female , Phylogeny , Reproduction/genetics , Lakes , Hybridization, Genetic
2.
Evolution ; 76(5): 1033-1051, 2022 05.
Article in English | MEDLINE | ID: mdl-35334114

ABSTRACT

The evolution of complex phenotypes like reproductive strategies is challenging to understand, as they often depend on multiple adaptations that only jointly result in a specific functionality. Sulawesi ricefishes (Adrianichthyidae) evolved a reproductive strategy termed as pelvic brooding. In contrast to the more common transfer brooding, female pelvic brooders carry an egg bundle connected to their body for weeks until the fry hatches. To examine the genetic architecture of pelvic brooding, we crossed the pelvic brooding Oryzias eversi and the transfer brooding Oryzias nigrimas (species divergence time: ∼3.6 my). We hypothesize, that a low number of loci and modularity have facilitated the rapid evolution of pelvic brooding. Traits associated to pelvic brooding, like rib length, pelvic fin length, and morphology of the genital papilla, were correlated in the parental species but correlations were reduced or lost in their F1 and F2 hybrids. Using the Castle-Wright estimator, we found that generally few loci underlie the studied traits. Further, both parental species showed modularity in their body plans. In conclusion, morphological traits related to pelvic brooding were based on a few loci and the mid-body region likely could evolve independently from the remaining body parts. Both factors presumably facilitated the evolution of pelvic brooding.


Subject(s)
Oryzias , Adaptation, Physiological , Animals , Female , Indonesia , Phenotype , Reproduction
3.
Curr Biol ; 32(3): 715-724.e4, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34932936

ABSTRACT

The evolution of pregnancy exposes parental tissues to new, potentially stressful conditions, which can trigger inflammation.1 Inflammation is costly2,3 and can induce embryo rejection, which constrains the evolution of pregnancy.1 In contrast, inflammation can also promote morphological innovation at the maternal-embryonic interface as exemplified by co-option of pro-inflammatory signaling for eutherian embryo implantation.1,4,5 Given its dual function, inflammation could be a key process explaining how innovations such as pregnancy and placentation evolved many times convergently. Pelvic brooding ricefishes evolved a novel "plug" tissue,6,7 which forms inside the female gonoduct after spawning, anchors egg-attaching filaments, and enables pelvic brooders to carry eggs externally until hatching.6,8 Compared to pregnancy, i.e., internal bearing of embryos, external bearing should alleviate constraints on inflammation in the reproductive tract. We thus hypothesized that an ancestral inflammation triggered by the retention of attaching filaments gave rise to pathways orchestrating plug formation. In line with our hypothesis, histological sections of the developing plug revealed signs of gonoduct injuries by egg-attaching filaments in the pelvic brooding ricefish Oryzias eversi. Tissue-specific transcriptomes showed that inflammatory signaling dominates the plug transcriptome and inflammation-induced genes controlling vital processes for plug development such as tissue growth and angiogenesis were overexpressed in the plug. Finally, mammalian placenta genes were enriched in the plug transcriptome, indicating convergent gene co-option for building, attaching, and sustaining a transient tissue in the female reproductive tract. This study highlights the role of gene co-option and suggests that recruiting inflammatory signaling into physiological processes provides a fast-track to evolutionary innovation.


Subject(s)
Eutheria , Placenta , Animals , Embryo, Mammalian , Female , Inflammation/genetics , Pregnancy , Reproduction
4.
BMC Ecol Evol ; 21(1): 57, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879056

ABSTRACT

BACKGROUND: Pelvic brooding is a form of uni-parental care, and likely evolved in parallel in two lineages of Sulawesi ricefishes. Contrary to all other ricefishes, females of pelvic brooding species do not deposit eggs at a substrate (transfer brooding), but carry them until the fry hatches. We assume that modifications reducing the costs of egg carrying are beneficial for pelvic brooding females, but likely disadvantageous in conspecific males, which might be resolved by the evolution of sexual dimorphism via sexual antagonistic selection. Thus we hypothesize that the evolution of pelvic brooding gave rise to female-specific skeletal adaptations that are shared by both pelvic brooding lineages, but are absent in conspecific males and transfer brooding species. To tackle this, we combine 3D-imaging and morphometrics to analyze skeletal adaptations to pelvic brooding. RESULTS: The morphology of skeletal traits correlated with sex and brooding strategy across seven ricefish species. Pelvic brooding females have short ribs caudal of the pelvic girdle forming a ventral concavity and clearly elongated and thickened pelvic fins compared to both sexes of transfer brooding species. The ventral concavity limits the body cavity volume in female pelvic brooders. Thus body volumes are smaller compared to males in pelvic brooding species, a pattern sharply contrasted by transfer brooding species. CONCLUSIONS: We showed in a comparative framework that highly similar, sexually dimorphic traits evolved in parallel in both lineages of pelvic brooding ricefish species. Key traits, present in all pelvic brooding females, were absent or much less pronounced in conspecific males and both sexes of transfer brooding species, indicating that they are non-beneficial or even maladaptive for ricefishes not providing extended care. We assume that the combination of ventral concavity and robust, elongated fins reduces drag of brooding females and provides protection and stability to the egg cluster. Thus ricefishes are one of the rare examples where environmental factors rather than sexual selection shaped the evolution of sexually dimorphic skeletal adaptations.


Subject(s)
Oryzias , Sex Characteristics , Animals , Female , Indonesia , Male , Phenotype , Reproduction
5.
Genes (Basel) ; 11(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272804

ABSTRACT

In the original article, there was a mistake in Figure 5 as published. When summarizing the results in the scheme, the treatment groups were mixed, and so some of the symbols for morphological and gene expression traits were not in accordance with the results [...].

6.
Methods Mol Biol ; 2090: 397-411, 2020.
Article in English | MEDLINE | ID: mdl-31975176

ABSTRACT

The number of fishes exceeds that of all other vertebrates both in terms of species numbers and in their morphological and phylogenetic diversity. They are an ecologically and economically important group and play an essential role as a resource for humans. This makes the genomic exploration of fishes an important area of research, both from an applied and a basic research perspective. Fish genomes can vary greatly in complexity, which is partially due to differences in size and content of repetitive DNA, a history of genome duplication events and because fishes may be polyploid, all of which complicate the assembly and analysis of genome sequences. However, the advent of modern sequencing techniques now facilitates access to genomic data that permit genome-wide exploration of genetic information even for previously unexplored species. The development of genomic resources for fishes is spearheaded by model organisms that have been subject to genetic analysis and genome sequencing projects for a long time. These offer a great potential for the exploration of new species through the transfer of genomic information in comparative analyses. A growing number of genome sequencing projects and the increasing availability of tools to assemble and access genomic information now move boundaries between model and nonmodel species and promises progress in many interesting but unexplored species that remain to be studied.


Subject(s)
Fishes/genetics , Genomics/methods , Animals , Databases, Genetic , Evolution, Molecular , Genome Size , Phylogeny
7.
Mol Biol Evol ; 37(1): 167-182, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31518427

ABSTRACT

Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype-environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.


Subject(s)
Genetic Fitness , Hybridization, Genetic , Saccharomyces/genetics , Stress, Physiological , Chromosomes, Fungal , Gene-Environment Interaction
8.
Genes (Basel) ; 10(11)2019 10 31.
Article in English | MEDLINE | ID: mdl-31683677

ABSTRACT

Phenotypic plasticity and local adaptation via genetic change are two major mechanisms of response to dynamic environmental conditions. These mechanisms are not mutually exclusive, since genetic change can establish similar phenotypes to plasticity. This connection between both mechanisms raises the question of how much of the variation observed between species or populations is plastic and how much of it is genetic. In this study, we used a structured population of fire salamanders (Salamandra salamandra), in which two subpopulations differ in terms of physiology, genetics, mate-, and habitat preferences. Our goal was to identify candidate genes for differential habitat adaptation in this system, and to explore the degree of plasticity compared to local adaptation. We therefore performed a reciprocal transfer experiment of stream- and pond-originated salamander larvae and analyzed changes in morphology and transcriptomic profile (using species-specific microarrays). We observed that stream- and pond-originated individuals diverge in morphology and gene expression. For instance, pond-originated larvae have larger gills, likely to cope with oxygen-poor ponds. When transferred to streams, pond-originated larvae showed a high degree of plasticity, resembling the morphology and gene expression of stream-originated larvae (reversion); however the same was not found for stream-originated larvae when transferred to ponds, where the expression of genes related to reduction-oxidation processes was increased, possibly to cope with environmental stress. The lack of symmetrical responses between transplanted animals highlights the fact that the adaptations are not fully plastic and that some level of local adaptation has already occurred in this population. This study illuminates the process by which phenotypic plasticity allows local adaptation to new environments and its potential role in the pathway of incipient speciation.


Subject(s)
Acclimatization , Genetic Speciation , Transcriptome , Urodela/genetics , Animals , Ecosystem , Phenotype
9.
Mol Ecol ; 28(6): 1491-1505, 2019 03.
Article in English | MEDLINE | ID: mdl-30520198

ABSTRACT

Hybridization can induce transposons to jump into new genomic positions, which may result in their accumulation across the genome. Alternatively, transposon copy numbers may increase through nonallelic (ectopic) homologous recombination in highly repetitive regions of the genome. The relative contribution of transposition bursts versus recombination-based mechanisms to evolutionary processes remains unclear because studies on transposon dynamics in natural systems are rare. We assessed the genomewide distribution of transposon insertions in a young hybrid lineage ("invasive Cottus", n = 11) and its parental species Cottus rhenanus (n = 17) and Cottus perifretum(n = 9) using a reference genome assembled from long single molecule pacbio reads. An inventory of transposable elements was reconstructed from the same data and annotated. Transposon copy numbers in the hybrid lineage increased in 120 (15.9%) out of 757 transposons studied here. The copy number increased on average by 69% (range: 10%-197%). Given the age of the hybrid lineage, this suggests that they have proliferated within a few hundred generations since admixture began. However, frequency spectra of transposon insertions revealed no increase in novel and rare insertions across assembled parts of the genome. This implies that transposons were added to repetitive regions of the genome that remain difficult to assemble. Future studies will need to evaluate whether recombination-based mechanisms rather than genomewide transposition may explain the majority of the recent transposon proliferation in the hybrid lineage. Irrespectively of the underlying mechanism, the observed overabundance in repetitive parts of the genome suggests that gene-rich regions are unlikely to be directly affected.


Subject(s)
DNA Copy Number Variations/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Fishes/genetics , Animals , Genome/genetics , Hybridization, Genetic
10.
J Evol Biol ; 31(9): 1254-1267, 2018 09.
Article in English | MEDLINE | ID: mdl-29927009

ABSTRACT

Ecological speciation and adaptive radiation are key processes shaping northern temperate freshwater fish diversity. Both often involve parapatric differentiation between stream and lake populations and less often, sympatric intralacustrine diversification into habitat- and resource-associated ecotypes. However, few taxa have been studied, calling for studies of others to investigate the generality of these processes. Here, we test for diversification within catchments in freshwater sculpins in a network of peri-Alpine lakes and streams. Using 8047 and 13 182 restriction site-associated (RADseq) SNPs, respectively, we identify three deeply divergent phylogeographic lineages associated with different major European drainages. Within the Aare catchment, we observe populations from geographically distant lakes to be genetically more similar to each other than to populations from nearby streams. This pattern is consistent with two distinct colonization waves, rather than by parapatric ecological speciation after a single colonization wave. We further find two distinct depth distribution modes in three lakes of the Aare catchment, one in very shallow and one in very deep water, and significant genomewide differentiation between these in one lake. Sculpins in the Aare catchment appear to represent an early-stage adaptive radiation involving the evolution of a lacustrine lineage distinct from parapatric stream sculpins and the repeated onset of depth-related intralacustrine differentiation.


Subject(s)
Genetic Speciation , Genetics, Population , Perciformes/classification , Animals , Ecosystem , Lakes , Phylogeography , Rivers , Sequence Analysis, DNA , Switzerland
11.
Mol Ecol ; 27(12): 2698-2713, 2018 06.
Article in English | MEDLINE | ID: mdl-29742304

ABSTRACT

Transcriptomes of organisms reveal differentiation associated with the use of different habitats. However, this leaves open how much of the observed differentiation can be attributed to genetic differences or to transcriptional plasticity. In this study, we disentangle causes of differential gene expression in larvae of the European fire salamander from the Kottenforst forest in Germany. Larvae inhabit permanent streams and ephemeral ponds and represent an example of a young evolutionary split associated with contrasting ecological conditions. We hypothesized that adaptation towards differences in water temperature plays a role because the thermal regime between stream and pond habitats differs notably. Tissue samples from tail fins of larvae were collected to study gene expression using microarrays. We found ample evidence for differentiation among larvae occupying different habitats in nature with 2,800 of 11,797 genes being differentially expressed. We then quantified transcriptional plasticity towards temperature and genetic differentiation based on controlled temperature laboratory experiments. Gene-by-environment interactions modelling revealed that 28% of the gene expression divergence observed among samples in nature could be attributed to plasticity related to water temperature. Expression patterns of only a small number of 101 genes were affected by the genotype. Our analysis demonstrates that effects of environmental factors must be taken into account to explain variation of gene expression in salamanders in nature. Notwithstanding, it provides first evidence that genetic factors determined gene expression divergence between pond and stream ecotypes and could be involved in adaptive evolution.


Subject(s)
Gene Expression/genetics , Larva/genetics , Urodela/genetics , Adaptation, Physiological/genetics , Animals , Ecosystem , Ecotype , Genetic Drift , Genotype , Germany , Phenotype , Ponds , Rivers , Temperature
12.
J Exp Zool B Mol Dev Evol ; 330(2): 96-108, 2018 03.
Article in English | MEDLINE | ID: mdl-29504232

ABSTRACT

The postembryonic development of amphibians has been characterized as divided into three predominant periods, hereafter named primary developmental stages: premetamorphosis (PreM), prometamorphosis (ProM), metamorphic climax (Meta), and completion of metamorphosis (PostM), largely based on examination of anuran development. Here, we categorized the postembryonic development of larvae of a poisonous fire salamander (Salamandra salamandra) by integrating morphology and gene expression (transcriptomic) data. Morphological analysis revealed three distinct clusters suggestive of PreM, ProM, and Meta, which were confirmed in parallel by microarray-derived gene expression analysis. In total, 3,510 probes targeted transcripts differentially expressed between the clusters we identified. Genes upregulated in PreM related to organogenesis, and those upregulated in Meta underlie structural proteins and related to development of anatomical structures and pigmentation. Biosynthesis pathways of pigments (pteridines and melanin) were upregulated during late ProM and Meta. Gas chromatographic analysis of alkaloids indicated the onset of steroidal alkaloid biosynthesis at ProM. When comparing gene expression in the fire salamander to that in other amphibians-three anurans, Xenopus laevis, X. tropicalis, and Michrohyla fissipes, and one caudate, Ambystoma mexicanum- we identified genes with conserved expression patterns involved in basic metamorphic processes such as skin restructuring and tail fin resorption. Our results support that primary stages of postembryonic development in caudates are homologous to those of anurans, and offer a baseline for the study of the evolution of developmental modes.


Subject(s)
Gene Expression Profiling/veterinary , Urodela/growth & development , Urodela/genetics , Alkaloids/metabolism , Animals , Gene Expression Regulation, Developmental , Larva/genetics , Larva/growth & development
13.
Evolution ; 72(4): 735-750, 2018 04.
Article in English | MEDLINE | ID: mdl-29411878

ABSTRACT

When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every generation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of recombination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties of empirical data and can serve to study the genomic patterns following admixture.


Subject(s)
Genome , Heredity , Hybridization, Genetic , Recombination, Genetic , Chromosomes , Models, Genetic
14.
Mol Phylogenet Evol ; 115: 16-26, 2017 10.
Article in English | MEDLINE | ID: mdl-28716741

ABSTRACT

The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a compelling example of how classical node support metrics such as bootstrap and Bayesian posterior probability can provide high confidence values in a phylogenomic topology even if the phylogenetic signal for some nodes is spurious, highlighting the importance of complementary approaches such as gene jackknifing. Yet, the general congruence among the topologies recovered from the RNAseq and RADseq data sets increases our confidence in the results, and validates the use of phylotranscriptomic approaches for reconstructing shallow relationships among closely related taxa. We hypothesize that the evolution of Salamandra has been characterized by episodes of introgressive hybridization, which would explain the difficulties of fully reconstructing their evolutionary relationships.


Subject(s)
Salamandra/classification , Animals , Bayes Theorem , Biological Evolution , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , Phylogeny , Polymorphism, Single Nucleotide , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Salamandra/genetics , Sequence Analysis, DNA , Transcriptome
15.
Curr Biol ; 27(7): R257-R258, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28376329

ABSTRACT

Subterranean biodiversity in Europe is spectacularly rich, with the Western Balkans being home to about 400 cave species, representing the highest number of species per area worldwide [1]. Nonetheless, cave fishes, which are the most commonly found vertebrates in underground habitats [2], have not been described from Europe so far [3]. Here, we report the first European record of a cave fish population, a loach of the genus Barbatula (Figure 1), found in the Danube-Aach system, an underground karst water system in Southern Germany [4]. The fish exhibit traits typically observed in organisms adapted to subterranean life including reduced eyes and pale body coloration [5]. The newly discovered population also represents globally the northernmost cave fish found so far. The geological history of the region implies that the Danube-Aach system was colonized post-glacially. A recent origin of the cave fish is supported by genetic analyses, because the subterranean population shares COI gene haplotypes with adjacent surface stone loach (Barbatula barbatula) populations (Figure 1D). Nonetheless, population genetic analyses based on microsatellites indicated that cave fish are genetically isolated from populations in surface habitats (Figure 1E) and exhibit reduced genetic variability. Hence, the newly discovered European cave loaches do not represent individuals displaced from surface populations, but they follow a unique evolutionary trajectory towards cave life.


Subject(s)
Adaptation, Biological , Biological Evolution , Cypriniformes/physiology , Genetic Variation , Life History Traits , Animals , Caves , Cypriniformes/genetics , Germany , Phylogeny
16.
Mol Ecol ; 26(18): 4712-4724, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28390096

ABSTRACT

Evolutionary dynamics of structural genetic variation in lineages of hybrid origin is not well explored, although structural mutations may increase in controlled hybrid crosses. We therefore tested whether structural variants accumulate in a fish of recent hybrid origin, invasive Cottus, relative to both parental species Cottus rhenanus and Cottus perifretum. Copy-number variation in exons of 10,979 genes was assessed using comparative genome hybridization arrays. Twelve genes showed significantly higher copy numbers in invasive Cottus compared to both parents. This coincided with increased expression for three genes related to vision, detoxification and muscle development, suggesting possible gene dosage effects. Copy number increases of putative transposons were assessed by comparative mapping of genomic DNA reads against a de novo assembly of 1,005 repetitive elements. In contrast to exons, copy number increases of repetitive elements were common (20.7%) in invasive Cottus, whereas decrease was very rare (0.01%). Among the increased repetitive elements, 53.8% occurred at higher numbers in C. perifretum compared to C. rhenanus, while only 1.4% were more abundant in C. rhenanus. This implies a biased mutational process that amplifies genetic material from one ancestor. To assess the frequency of de novo mutations through hybridization, we screened 64 laboratory-bred F2 offspring between the parental species for copy-number changes at five candidate loci. We found no evidence for new structural variants, indicating that they are too rare to be detected given our sampling scheme. Instead, they must have accumulated over more generations than we observed in a controlled cross.


Subject(s)
DNA Copy Number Variations , DNA Transposable Elements , Hybridization, Genetic , Perciformes/genetics , Animals , Biological Evolution , Introduced Species
17.
Mitochondrial DNA B Resour ; 2(2): 666-668, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-33473940

ABSTRACT

Freshwater sculpins represent a diverse but poorly-understood constituent of the Holarctic ichthyofauna. Sculpins are considered sensitive to pollution and habitat change, serving as aquatic bioindicators in ecotoxicology. Many species are protected by conservation agencies, due to anthropogenic activity within restricted geographic distributions. Here, we provide the first complete mitochondrial DNA sequences for three freshwater sculpins (Cottus asper, C. perifretum, C. rhenanus). These data are used to infer an updated mtDNA phylogeny for the genus Cottus, which supports results of previous research. These data are likely to be useful for future studies in biogeography, conservation, and functional genomics.

18.
Mol Ecol ; 26(1): 25-42, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27541083

ABSTRACT

Understanding the genomic basis of adaptive divergence in the presence of gene flow remains a major challenge in evolutionary biology. In prickly sculpin (Cottus asper), an abundant euryhaline fish in northwestern North America, high genetic connectivity among brackish-water (estuarine) and freshwater (tributary) habitats of coastal rivers does not preclude the build-up of neutral genetic differentiation and emergence of different life history strategies. Because these two habitats present different osmotic niches, we predicted high genetic differentiation at known teleost candidate genes underlying salinity tolerance and osmoregulation. We applied whole-genome sequencing of pooled DNA samples (Pool-Seq) to explore adaptive divergence between two estuarine and two tributary habitats. Paired-end sequence reads were mapped against genomic contigs of European Cottus, and the gene content of candidate regions was explored based on comparisons with the threespine stickleback genome. Genes showing signals of repeated differentiation among brackish-water and freshwater habitats included functions such as ion transport and structural permeability in freshwater gills, which suggests that local adaptation to different osmotic niches might contribute to genomic divergence among habitats. Overall, the presence of both repeated and unique signatures of differentiation across many loci scattered throughout the genome is consistent with polygenic adaptation from standing genetic variation and locally variable selection pressures in the early stages of life history divergence.


Subject(s)
Adaptation, Biological/genetics , Ecotype , Gene Flow , Perciformes/genetics , Animals , Estuaries , Fresh Water , Genome , Multifactorial Inheritance
19.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26354934

ABSTRACT

Despite their deeply conserved function among vertebrates, ectodysplasin (Eda) signalling genes are involved in microevolutionary change in humans and sticklebacks. If such a dual role is common, Eda signalling genes constitute hotspots for morphological evolution. Variation in sculpin (Cottus) skin prickling and body shape resembles patterns caused by variation in Eda signalling in sticklebacks. We mapped Eda signalling genes and performed quantitative trait locus mapping in crosses between Cottus rhenanus and Cottus perifretum. A genomic region containing the Eda receptor (Edar) was strongly associated with prickling and contributed to shape. The expression of Edar in developing prickles and skeletal elements in Cottus was confirmed by in situ hybridization. Coding sequence changes between Edar alleles in C. rhenanus and C. perifretum exceeded sequence differentiation in other vertebrates. However, it is likely that additional genetic elements besides coding changes affect the phenotypic variation. Although the phenotype in a natural hybrid lineage between C. rhenanus and C. perifretum resembles C. perifretum, the respective coding Edar alleles are not fully fixed (88.6%). Hence, our results support an involvement of Eda signalling in microevolutionary changes, but imply that the Edar gene is affected by multiple evolutionary processes that vary among freshwater sculpins.


Subject(s)
Biological Evolution , Body Patterning/genetics , Ectodysplasins/genetics , Hybridization, Genetic , Perciformes/genetics , Receptors, Ectodysplasin/genetics , Signal Transduction , Animals , Epidermis/anatomy & histology , Genetics, Population , Perciformes/classification , Phenotype
20.
Evol Appl ; 7(5): 555-68, 2014 May.
Article in English | MEDLINE | ID: mdl-24944569

ABSTRACT

In addition to ecological factors, evolutionary processes can determine the invasion success of a species. In particular, genetic admixture has the potential to induce rapid evolutionary change, which can result from natural or human-assisted secondary contact between differentiated populations. We studied the recent range expansion of zander in Germany focusing on the interplay between invasion and genetic admixture. Historically, the rivers Elbe and Danube harboured the most north-western source populations from which a north-westward range expansion occurred. This was initiated by introducing zander outside its native range into rivers and lakes, and was fostered by migration through artificial canals and stocking from various sources. We analysed zander populations of the native and invaded ranges using nuclear and mitochondrial genetic markers. Three genetic lineages were identified, which were traced to ancestral ranges. Increased genetic diversity and admixture in the invaded region highlighted asymmetric gene flow towards this area. We suppose that the adaptive potential of the invading populations was promoted by genetic admixture, whereas competitive exclusion in the native areas provided a buffer against introgression by novel genotypes. These explanations would be in line with evidence that hybridization can drive evolutionary change under conditions when new niches can be exploited.

SELECTION OF CITATIONS
SEARCH DETAIL
...