Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(9): 1610-1628, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33984131

ABSTRACT

Histamine is a biogenic amine and a food safety hazard, and it is the only biogenic amine regulated by statute or hazard analysis and critical control point guidance. This article reviews the regulations for histamine levels in fish in countries around the world, including maximum limits or levels and sampling procedures in different fish preparations. The maximum histamine levels, sampling plans, and fish products are listed. The country-by-country regulations for maximum histamine acceptance levels in some food products vary by a factor of 8, from 50 ppm in some countries to a maximum of 400 ppm in other countries. For similar food products, the maximum histamine levels vary by a factor of 4 (from 50 ppm to 200 ppm) in, for example, fresh tuna. The country-by-country sampling plans vary widely as well, and these, too, are covered in detail.


Subject(s)
Biogenic Amines , Histamine , Animals , Fish Products/analysis , Fishes , Tuna
2.
J Food Prot ; 81(3): 444-455, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29474147

ABSTRACT

An experiment to validate the precooking of tuna as a control for histamine formation was carried out at a commercial tuna factory in Fiji. Albacore tuna (Thunnus alalunga) were brought on board long-line catcher vessels alive, immediately chilled but never frozen, and delivered to an on-shore facility within 3 to 13 days. These fish were then allowed to spoil at 25 to 30°C for 21 to 25 h to induce high levels of histamine (>50 ppm), as a simulation of "worst-case" postharvest conditions, and subsequently frozen. These spoiled fish later were thawed normally and then precooked at a commercial tuna processing facility to a target maximum core temperature of 60°C. These tuna were then held at ambient temperatures of 19 to 37°C for up to 30 h, and samples were collected every 6 h for histamine analysis. After precooking, no further histamine formation was observed for 12 to 18 h, indicating that a conservative minimum core temperature of 60°C pauses subsequent histamine formation for 12 to 18 h. Using the maximum core temperature of 60°C provided a challenge study to validate a recommended minimum core temperature of 60°C, and 12 to 18 h was sufficient to convert precooked tuna into frozen loins or canned tuna. This industrial-scale process validation study provides support at a high confidence level for the preventive histamine control associated with precooking. This study was conducted with tuna deliberately allowed to spoil to induce high concentrations of histamine and histamine-forming capacity and to fail standard organoleptic evaluations, and the critical limits for precooking were validated. Thus, these limits can be used in a hazard analysis critical control point plan in which precooking is identified as a critical control point.

SELECTION OF CITATIONS
SEARCH DETAIL
...