Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Bull Entomol Res ; 110(1): 1-14, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31223102

ABSTRACT

Tephritidae is a large family that includes several fruit and vegetable pests. These organisms usually harbor a variegated bacterial community in their digestive systems. Symbiotic associations of bacteria and fruit flies have been well-studied in the genera Anastrepha, Bactrocera, Ceratitis, and Rhagoletis. Molecular and culture-based techniques indicate that many genera of the Enterobacteriaceae family, especially the genera of Klebsiella, Enterobacter, Pectobacterium, Citrobacter, Erwinia, and Providencia constitute the most prevalent populations in the gut of fruit flies. The function of symbiotic bacteria provides a promising strategy for the biological control of insect pests. Gut bacteria can be used for controlling fruit fly through many ways, including attracting as odors, enhancing the success of sterile insect technique, declining the pesticide resistance, mass rearing of parasitoids and so on. New technology and recent research improved our knowledge of the gut bacteria diversity and function, which increased their potential for pest management. In this review, we discussed the diversity of bacteria in the economically important fruit fly and the use of these bacteria for controlling fruit fly populations. All the information is important for strengthening the future research of new strategies developed for insect pest control by the understanding of symbiotic relationships and multitrophic interactions between host plant and insects.


Subject(s)
Pest Control, Biological , Tephritidae/microbiology , Animals , Microbiota , Symbiosis
2.
Bull Entomol Res ; 109(4): 500-509, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30394234

ABSTRACT

The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive insect pest of a wide range of fruit crops. Commensal bacteria play a very important part in the development, reproduction, and fitness of their host fruit fly. Uncovering the function of gut bacteria has become a worldwide quest. Using antibiotics to remove gut bacteria is a common method to investigate gut bacteria function. In the present study, three types of antibiotics (tetracycline, ampicillin, and streptomycin), each with four different concentrations, were used to test their effect on the gut bacteria diversity of laboratory-reared B. dorsalis. Combined antibiotics can change bacteria diversity, including cultivable and uncultivable bacteria, for both male and female adult flies. Secondary bacteria became the dominant population in female and male adult flies with the decrease in normally predominant bacteria. However, in larvae, only the predominant bacteria decreased, the bacteria diversity did not change a lot, likely because of the short acting time of the antibiotics. The bacteria diversity did not differ among fruit fly treatments with antibiotics of different concentrations. This study showed the dynamic changes of gut bacterial diversity in antibiotics-treated flies, and provides a foundation for research on the function of gut bacteria of the oriental fruit fly.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Tephritidae/microbiology , Ampicillin/administration & dosage , Animals , Bacterial Physiological Phenomena/drug effects , Female , Insect Control , Larva/growth & development , Larva/microbiology , Male , Streptomycin/administration & dosage , Tephritidae/growth & development , Tetracycline/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL