Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Netw Neurosci ; 8(1): 226-240, 2024.
Article in English | MEDLINE | ID: mdl-38562287

ABSTRACT

Neural variability is thought to facilitate survival through flexible adaptation to changing environmental demands. In humans, such capacity for flexible adaptation may manifest as fluid reasoning, inhibition of automatic responses, and mental set-switching-skills falling under the broad domain of executive functions that fluctuate over the life span. Neural variability can be quantified via the BOLD signal in resting-state fMRI. Variability of large-scale brain networks is posited to underpin complex cognitive activities requiring interactions between multiple brain regions. Few studies have examined the extent to which network-level brain signal variability across the life span maps onto high-level processes under the umbrella of executive functions. The present study leveraged a large publicly available neuroimaging dataset to investigate the relationship between signal variability and executive functions across the life span. Associations between brain signal variability and executive functions shifted as a function of age. Limbic-specific variability was consistently associated with greater performance across subcomponents of executive functions. Associations between executive function subcomponents and network-level variability of the default mode and central executive networks, as well as whole-brain variability, varied across the life span. Findings suggest that brain signal variability may help to explain to age-related differences in executive functions across the life span.


Traditionally, regional variability in brain signals has been viewed as a source of noise in human neuroimaging research. Our study demonstrates that brain signal variability may contain meaningful information related to psychological processes. We demonstrate that brain signal variability, particularly whole-brain variability, may serve as a reliable indicator of cognitive functions across the life span. Global variability and network-level variability play differing roles in supporting executive functions. Findings suggest that brain signal variability serves as a meaningful indicator of development and cognitive aging.

2.
J Autism Dev Disord ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038873

ABSTRACT

The COVID-19 pandemic may have exacerbated depression, anxiety, and executive function (EF) difficulties in children with autism spectrum disorder (ASD). EF skills have been positively associated with mental health outcomes. Here, we probed the psychosocial impacts of pandemic responses in children with and without ASD by relating pre-pandemic EF assessments with anxiety and depression symptoms several months into the pandemic. We found that pre-pandemic inhibition and shifting difficulties, measured by the Behavior Rating Inventory of Executive Function, predicted higher risk of anxiety symptoms. These findings are critical for promoting community recovery and maximizing clinical preparedness to support children at increased risk for adverse psychosocial outcomes.

3.
Nat Neurosci ; 25(8): 1093-1103, 2022 08.
Article in English | MEDLINE | ID: mdl-35902649

ABSTRACT

Resting-state functional magnetic resonance imaging (MRI) has yielded seemingly disparate insights into large-scale organization of the human brain. The brain's large-scale organization can be divided into two broad categories: zero-lag representations of functional connectivity structure and time-lag representations of traveling wave or propagation structure. In this study, we sought to unify observed phenomena across these two categories in the form of three low-frequency spatiotemporal patterns composed of a mixture of standing and traveling wave dynamics. We showed that a range of empirical phenomena, including functional connectivity gradients, the task-positive/task-negative anti-correlation pattern, the global signal, time-lag propagation patterns, the quasiperiodic pattern and the functional connectome network structure, are manifestations of these three spatiotemporal patterns. These patterns account for much of the global spatial structure that underlies functional connectivity analyses and unifies phenomena in resting-state functional MRI previously thought distinct.


Subject(s)
Connectome , Rest , Brain , Connectome/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
5.
Neuroimage ; 242: 118466, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34389443

ABSTRACT

Functional connectivity (FC), or the statistical interdependence of blood-oxygen dependent level (BOLD) signals between brain regions using fMRI, has emerged as a widely used tool for probing functional abnormalities in clinical populations due to the promise of the approach across conceptual, technical, and practical levels. With an already vast and steadily accumulating neuroimaging literature on neurodevelopmental, psychiatric, and neurological diseases and disorders in which FC is a primary measure, we aim here to provide a high-level synthesis of major concepts that have arisen from FC findings in a manner that cuts across different clinical conditions and sheds light on overarching principles. We highlight that FC has allowed us to discover the ubiquity of intrinsic functional networks across virtually all brains and clarify typical patterns of neurodevelopment over the lifespan. This understanding of typical FC maturation with age has provided important benchmarks against which to evaluate divergent maturation in early life and degeneration in late life. This in turn has led to the important insight that many clinical conditions are associated with complex, distributed, network-level changes in the brain, as opposed to solely focal abnormalities. We further emphasize the important role that FC studies have played in supporting a dimensional approach to studying transdiagnostic clinical symptoms and in enhancing the multimodal characterization and prediction of the trajectory of symptom progression across conditions. We highlight the unprecedented opportunity offered by FC to probe functional abnormalities in clinical conditions where brain function could not be easily studied otherwise, such as in disorders of consciousness. Lastly, we suggest high priority areas for future research and acknowledge critical barriers associated with the use of FC methods, particularly those related to artifact removal, data denoising and feasibility in clinical contexts.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/physiology , Consciousness , Humans , Learning , Nerve Net
6.
Hum Brain Mapp ; 42(14): 4740-4749, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34312945

ABSTRACT

The insular cortex and anterior cingulate cortex together comprise the salience or midcingulo-insular network, involved in detecting salient events and initiating control signals to mediate brain network dynamics. The extent to which functional coupling between the salience network and the rest of the brain undergoes changes due to development and aging is at present largely unexplored. Here, we examine dynamic functional connectivity (dFC) of the salience network in a large life span sample (n = 601; 6-85 years old). A sliding-window analysis and k-means clustering revealed five states of dFC formed with the salience network, characterized by either widespread asynchrony or different patterns of synchrony between the salience network and other brain regions. We determined the frequency, dwell time, total transitions, and specific state-to-state transitions for each state and subject, regressing the metrics with subjects' age to identify life span trends. A dynamic state characterized by low connectivity between the salience network and the rest of the brain had a strong positive quadratic relationship between age and both frequency and dwell time. Additional frequency, dwell time, total transitions, and state-to-state transition trends were observed with other salience network states. Our results highlight the metastable dynamics of the salience network and its role in the maturation of brain regions critical for cognition.


Subject(s)
Aging/physiology , Connectome , Gyrus Cinguli/physiology , Human Development/physiology , Insular Cortex/physiology , Nerve Net/physiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Attention/physiology , Child , Female , Gyrus Cinguli/diagnostic imaging , Humans , Insular Cortex/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Young Adult
7.
PLoS Biol ; 19(7): e3001313, 2021 07.
Article in English | MEDLINE | ID: mdl-34324488

ABSTRACT

Methods for data analysis in the biomedical, life, and social (BLS) sciences are developing at a rapid pace. At the same time, there is increasing concern that education in quantitative methods is failing to adequately prepare students for contemporary research. These trends have led to calls for educational reform to undergraduate and graduate quantitative research method curricula. We argue that such reform should be based on data-driven insights into within- and cross-disciplinary use of analytic methods. Our survey of peer-reviewed literature analyzed approximately 1.3 million openly available research articles to monitor the cross-disciplinary mentions of analytic methods in the past decade. We applied data-driven text mining analyses to the "Methods" and "Results" sections of a large subset of this corpus to identify trends in analytic method mentions shared across disciplines, as well as those unique to each discipline. We found that the t test, analysis of variance (ANOVA), linear regression, chi-squared test, and other classical statistical methods have been and remain the most mentioned analytic methods in biomedical, life science, and social science research articles. However, mentions of these methods have declined as a percentage of the published literature between 2009 and 2020. On the other hand, multivariate statistical and machine learning approaches, such as artificial neural networks (ANNs), have seen a significant increase in the total share of scientific publications. We also found unique groupings of analytic methods associated with each BLS science discipline, such as the use of structural equation modeling (SEM) in psychology, survival models in oncology, and manifold learning in ecology. We discuss the implications of these findings for education in statistics and research methods, as well as within- and cross-disciplinary collaboration.


Subject(s)
Education/trends , Research Personnel/education , Analysis of Variance , Curriculum , Humans , Publishing , Surveys and Questionnaires
8.
Cereb Cortex ; 31(11): 5263-5274, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34145442

ABSTRACT

The neural mechanisms contributing to flexible cognition and behavior and how they change with development and aging are incompletely understood. The current study explored intrinsic brain dynamics across the lifespan using resting-state fMRI data (n = 601, 6-85 years) and examined the interactions between age and brain dynamics among three neurocognitive networks (midcingulo-insular network, M-CIN; medial frontoparietal network, M-FPN; and lateral frontoparietal network, L-FPN) in relation to behavioral measures of cognitive flexibility. Hierarchical multiple regression analysis revealed brain dynamics among a brain state characterized by co-activation of the L-FPN and M-FPN, and brain state transitions, moderated the relationship between quadratic effects of age and cognitive flexibility as measured by scores on the Delis-Kaplan Executive Function System (D-KEFS) test. Furthermore, simple slope analyses of significant interactions revealed children and older adults were more likely to exhibit brain dynamic patterns associated with poorer cognitive flexibility compared with younger adults. Our findings link changes in cognitive flexibility observed with age with the underlying brain dynamics supporting these changes. Preventative and intervention measures should prioritize targeting these networks with cognitive flexibility training to promote optimal outcomes across the lifespan.


Subject(s)
Brain Mapping , Longevity , Aged , Brain/diagnostic imaging , Brain/physiology , Child , Cognition/physiology , Executive Function/physiology , Humans , Magnetic Resonance Imaging , Nerve Net/physiology , Neural Pathways/physiology
9.
Neuroimage ; 237: 118149, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33991695

ABSTRACT

Neuronal variability patterns promote the formation and organization of neural circuits. Macroscale similarities in regional variability patterns may therefore be linked to the strength and topography of inter-regional functional connections. To assess this relationship, we used multi-echo resting-state fMRI and investigated macroscale connectivity-variability associations in 154 adult humans (86 women; mean age = 22yrs). We computed inter-regional measures of moment-to-moment BOLD signal variability and related them to inter-regional functional connectivity. Region pairs that showed stronger functional connectivity also showed similar BOLD signal variability patterns, independent of inter-regional distance and structural similarity. Connectivity-variability associations were predominant within all networks and followed a hierarchical spatial organization that separated sensory, motor and attention systems from limbic, default and frontoparietal control association networks. Results were replicated in a second held-out fMRI run. These findings suggest that macroscale BOLD signal variability is an organizational feature of large-scale functional networks, and shared inter-regional BOLD signal variability may underlie macroscale brain network dynamics.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Connectome , Nerve Net/diagnostic imaging , Nerve Net/physiology , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
10.
Cereb Cortex ; 31(11): 4867-4876, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33774654

ABSTRACT

Depressive symptoms are reported by 20% of the population and are related to altered functional integrity of large-scale brain networks. The link between moment-to-moment brain function and depressive symptomatology, and the implications of these relationships for clinical and community populations alike, remain understudied. The present study examined relationships between functional brain dynamics and subclinical-to-mild depressive symptomatology in a large community sample of adults with and without psychiatric diagnoses. This study used data made available through the Enhanced Nathan Kline Institute-Rockland Sample; 445 participants between 18 and 65 years of age completed a 10-min resting-state functional MRI scan. Coactivation pattern analysis was used to examine the dimensional relationship between depressive symptoms and whole-brain states. Elevated levels of depressive symptoms were associated with increased frequency and dwell time of the default mode network, a brain network associated with self-referential thought, evaluative judgment, and social cognition. Furthermore, increased depressive symptom severity was associated with less frequent occurrences of a hybrid brain network implicated in cognitive control and goal-directed behavior, which may impair the inhibition of negative thinking patterns in depressed individuals. These findings demonstrate how temporally dynamic techniques offer novel insights into time-varying neural processes underlying subclinical and clinically meaningful depressive symptomatology.


Subject(s)
Brain , Depression , Adult , Brain/diagnostic imaging , Brain Mapping , Creativity , Depression/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging
11.
Autism Res ; 14(5): 873-886, 2021 05.
Article in English | MEDLINE | ID: mdl-33616282

ABSTRACT

Children with autism spectrum disorder (ASD) have higher rates of overweight and obesity (OWOB) compared with typically developing (TD) children. Brain functional connectivity differences have been shown in both ASD and OWOB. However, only one study to date has examined ASD and OWOB concurrently, so little is known regarding the neural mechanisms associated with the higher prevalence of OWOB and its behavioral impacts in ASD. We investigated co-activation patterns (CAPs) of brain regions identified by independent component analysis in 129 children and adolescents between 6 and 18 years of age (n = 68 ASD). We examined the interaction between body mass index (BMI) and diagnosis in predicting dynamic brain metrics (dwell time, DT; frequency of occurrence, and transitions between states) as well as dimensional brain-behavior relationships. The relationship between BMI and brain dynamics was moderated by diagnosis (ASD, TD), particularly among the frequency of CAP 4, characterized by co-activation of lateral frontoparietal, temporal, and frontal networks. This pattern was negatively associated with parent-reported inhibition skills. Children with ASD had shorter CAP 1, characterized by co-activation of the subcortical, temporal, sensorimotor, and frontal networks, and CAP 4 DTs compared with TD children. CAP 1 DT was negatively associated with cognitive flexibility, inhibition, social functioning, and BMI. Cognitive flexibility moderated the relationship between BMI and brain dynamics in the visual network. Our findings provide novel evidence of neural mechanisms associated with OWOB in children with ASD. Further, poorer cognitive flexibility may result in increased vulnerability for children with ASD and co-occurring OWOB. LAY SUMMARY: Obesity is a societal epidemic and is common in autism, however, little is known about the neural mechanisms associated with the higher rates of obesity in autism. Here, we find unique patterns of brain dynamics associated with obesity in autism that were not observed in typically developing children. Further, the relationship between body mass index and brain dynamics depended on cognitive flexibility. These findings suggest that individuals with autism may be more vulnerable to the effects of obesity on brain function. Autism Res 2021, 14: 873-886. © 2021 International Society for Autism Research, Wiley Periodicals LLC.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adolescent , Body Mass Index , Brain/diagnostic imaging , Brain Mapping , Child , Humans , Magnetic Resonance Imaging , Neural Pathways
12.
Biol Psychol ; 157: 107986, 2020 11.
Article in English | MEDLINE | ID: mdl-33137415

ABSTRACT

Neurovisceral integration models emphasize the role of frontal lobes in cognitive, behavioral, and emotional regulation. Two candidate hubs for the regulation of cardio-autonomic control, anxiety, and executive attention are the dorsolateral prefrontal cortex (DLPFC) and middle frontal gyrus (MFG). Two-hundred and seventy-one adults (62.9 % female) aged 18-85 years were selected from the NKI-Rockland Sample. Resting state functional imaging data was preprocessed, and seeds extracted from bilateral DLPFC and MFG to test 4 regression models predicting connectivity with high frequency HRV (HF-HRV), trait anxiety (TA), and reaction time on an executive attention task. After controlling for age, sex, body mass index and head motion, the right DLPFC-MFG seed pair provided strongest support for neurovisceral integration indexed by HF-HRV, low TA and shorter reaction time on the attention network task. This hemispheric effect may underlie the inhibitory role of right PFC in the regulation of cardio-autonomic function, emotion, and executive attention.


Subject(s)
Executive Function , Magnetic Resonance Imaging , Prefrontal Cortex , Adolescent , Adult , Aged , Aged, 80 and over , Cognition , Female , Frontal Lobe , Humans , Male , Middle Aged , Prefrontal Cortex/physiology , Reaction Time , Young Adult
13.
Neuroimage Clin ; 28: 102396, 2020.
Article in English | MEDLINE | ID: mdl-32891039

ABSTRACT

OBJECTIVE: Brain dynamics underlie flexible cognition and behavior, yet little is known regarding this relationship in autism spectrum disorder (ASD). We examined time-varying changes in functional co-activation patterns (CAPs) across rest and task-evoked brain states to characterize differences between children with ASD and typically developing (TD) children and identify relationships with severity of social behaviors and restricted and repetitive behaviors. METHOD: 17 children with ASD and 27 TD children ages 7-12 completed a resting-state fMRI scan and four runs of a non-cued attention switching task. Metrics indexing brain dynamics were generated from dynamic CAPs computed across three major large-scale brain networks: midcingulo-insular (M-CIN), medial frontoparietal (M-FPN), and lateral frontoparietal (L-FPN). RESULTS: Five time-varying CAPs representing dynamic co-activations among network nodes were identified across rest and task fMRI datasets. Significant Diagnosis × Condition interactions were observed for the dwell time of CAP 3, representing co-activation between nodes of the M-CIN and L-FPN, and the frequency of CAP 1, representing co-activation between nodes of the L-FPN. A significant brain-behavior association between dwell time of CAP 5, representing co-activation between nodes of the M-FPN, and social abilities was also observed across both groups of children. CONCLUSION: Analysis of brain co-activation patterns reveals altered dynamics among three core networks in children with ASD, particularly evident during later stages of an attention task. Dimensional analyses demonstrating relationships between M-FPN dwell time and social abilities suggest that metrics of brain dynamics may index individual differences in social cognition and behavior.


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Child , Cognition , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
14.
Autism Res ; 13(9): 1501-1515, 2020 09.
Article in English | MEDLINE | ID: mdl-32840961

ABSTRACT

While much progress has been made toward understanding the neurobiology of social and communication deficits associated with autism spectrum disorder (ASD), less is known regarding the neurobiological basis of restricted and repetitive behaviors (RRBs) central to the ASD diagnosis. Symptom severity for RRBs in ASD is associated with cognitive inflexibility. Thus, understanding the neural mechanisms underlying cognitive inflexibility in ASD is critical for tailoring therapies to treat this understudied yet pervasive symptom. Here we used a set-shifting paradigm adopted from the developmental cognitive neuroscience literature involving flexible switching between stimulus categories to examine task performance and neural responses in children with ASD. Behaviorally, we found little evidence for group differences in performance on the set-shifting task. Compared with typically developing children, children with ASD exhibited greater activation of the parahippocampal gyrus during performance on trials requiring switching. These findings suggest that children with ASD may need to recruit memory-based neural systems to a greater degree when learning to flexibly associate stimuli with responses. LAY SUMMARY: Children with autism often struggle to behave in a flexible way when faced with unexpected challenges. We examined brain responses during a task thought to involve flexible thinking and found that compared with typically developing children, those with autism relied more on brain areas involved in learning and memory to complete the task. This study helps us to understand what types of cognitive tasks are best suited for exploring the neural basis of cognitive flexibility in children with autism. Autism Res 2020, 13: 1501-1515. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.


Subject(s)
Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/physiopathology , Behavior , Brain/pathology , Brain/physiopathology , Neurons , Autistic Disorder/pathology , Autistic Disorder/physiopathology , Brain Mapping , Child , Female , Humans , Male
15.
Soc Cogn Affect Neurosci ; 15(2): 225-233, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32128580

ABSTRACT

Recent approaches for understanding the neural basis of pain empathy emphasize the dynamic construction of networks underlying this multifaceted social cognitive process. Inter-subject phase synchronization (ISPS) is an approach for exploratory analysis of task-fMRI data that reveals brain networks dynamically synchronized to task-features across participants. We applied ISPS to task-fMRI data assessing vicarious pain empathy in healthy participants (n = 238). The task employed physical (limb) and affective (face) painful and corresponding non-painful visual stimuli. ISPS revealed two distinct networks synchronized during physical pain observation, one encompassing anterior insula and midcingulate regions strongly engaged in (vicarious) pain and another encompassing parietal and inferior frontal regions associated with social cognitive processes which may modulate and support the physical pain empathic response. No robust network synchronization was observed for affective pain, possibly reflecting high inter-individual variation in response to socially transmitted pain experiences. ISPS also revealed networks related to task onset or general processing of physical (limb) or affective (face) stimuli which encompassed networks engaged in object manipulation or face processing, respectively. Together, the ISPS approach permits segregation of networks engaged in different psychological processes, providing additional insight into shared neural mechanisms of empathy for physical pain, but not affective pain, across individuals.


Subject(s)
Brain/physiology , Empathy/physiology , Pain/psychology , Adult , Brain Mapping , Cerebral Cortex/physiology , Female , Frontal Lobe/physiology , Humans , Magnetic Resonance Imaging , Male , Young Adult
16.
Neuroinformatics ; 18(3): 451-463, 2020 06.
Article in English | MEDLINE | ID: mdl-32067196

ABSTRACT

The growing literature reporting results of cognitive-neural mappings has increased calls for an adequate organizing ontology, or taxonomy, of these mappings. This enterprise is non-trivial, as relevant dimensions that might contribute to such an ontology are not yet agreed upon. We propose that any candidate dimensions should be evaluated on their ability to explain observed differences in functional neuroimaging activation patterns. In this study, we use a large sample of task-based functional magnetic resonance imaging (task-fMRI) results and a data-driven strategy to identify these dimensions. First, using a data-driven dimension reduction approach and multivariate distance matrix regression (MDMR), we quantify the variance among activation maps that is explained by existing ontological dimensions. We find that 'task paradigm' categories explain more variance among task-activation maps than other dimensions, including latent cognitive categories. Surprisingly, 'study ID', or the study from which each activation map was reported, explained close to 50% of the variance in activation patterns. Using a clustering approach that allows for overlapping clusters, we derived data-driven latent activation states, associated with re-occurring configurations of the canonical frontoparietal, salience, sensory-motor, and default mode network activation patterns. Importantly, with only four data-driven latent dimensions, one can explain greater variance among activation maps than all conventional ontological dimensions combined. These latent dimensions may inform a data-driven cognitive ontology, and suggest that current descriptions of cognitive processes and the tasks used to elicit them do not accurately reflect activation patterns commonly observed in the human brain.


Subject(s)
Brain Mapping/methods , Brain/physiology , Cognition/physiology , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Nerve Net/physiology
17.
Netw Neurosci ; 4(4): 1219-1234, 2020.
Article in English | MEDLINE | ID: mdl-33409437

ABSTRACT

Brain connectivity studies of autism spectrum disorder (ASD) have historically relied on static measures of functional connectivity. Recent work has focused on identifying transient configurations of brain activity, yet several open questions remain regarding the nature of specific brain network dynamics in ASD. We used a dynamic coactivation pattern (CAP) approach to investigate the salience/midcingulo-insular (M-CIN) network, a locus of dysfunction in ASD, in a large multisite resting-state fMRI dataset collected from 172 children (ages 6-13 years; n = 75 ASD; n = 138 male). Following brain parcellation by using independent component analysis, dynamic CAP analyses were conducted and k-means clustering was used to determine transient activation patterns of the M-CIN. The frequency of occurrence of different dynamic CAP brain states was then compared between children with ASD and typically developing (TD) children. Dynamic brain configurations characterized by coactivation of the M-CIN with central executive/lateral fronto-parietal and default mode/medial fronto-parietal networks appeared less frequently in children with ASD compared with TD children. This study highlights the utility of time-varying approaches for studying altered M-CIN function in prevalent neurodevelopmental disorders. We speculate that altered M-CIN dynamics in ASD may underlie the inflexible behaviors commonly observed in children with the disorder.

18.
Sci Rep ; 9(1): 14286, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582792

ABSTRACT

The global signal in resting-state functional MRI data is considered to be dominated by physiological noise and artifacts, yet a growing literature suggests that it also carries information about widespread neural activity. The biological relevance of the global signal remains poorly understood. Applying principal component analysis to a large neuroimaging dataset, we found that individual variation in global signal topography recapitulates well-established patterns of large-scale functional brain networks. Using canonical correlation analysis, we delineated relationships between individual differences in global signal topography and a battery of phenotypes. The first canonical variate of the global signal, resembling the frontoparietal control network, was significantly related to an axis of positive and negative life outcomes and psychological function. These results suggest that the global signal contains a rich source of information related to trait-level cognition and behavior. This work has significant implications for the contentious debate over artifact removal practices in neuroimaging.


Subject(s)
Brain/physiology , Nerve Net/physiology , Adult , Brain Mapping , Cognition , Humans , Magnetic Resonance Imaging , Principal Component Analysis , Rest , Young Adult
19.
Hum Brain Mapp ; 40(15): 4564-4576, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31379120

ABSTRACT

Mind wandering (MW) has become a prominent topic of neuroscientific investigation due to the importance of understanding attentional processes in our day-to-day experiences. Emerging evidence suggests a critical role for three large-scale brain networks in MW: the default network (DN), the central executive network (CEN), and the salience network (SN). Advances in analytical methods for neuroimaging data (i.e., dynamic functional connectivity, DFC) demonstrate that the interactions between these networks are not static but dynamically fluctuate over time (Chang & Glover, 2010, NeuroImage, 50(1), 81-98). While the bulk of the evidence comes from studies involving resting-state functional MRI, a few studies have investigated DFC during a task. Direct comparison of DFC during rest and task with frequent MW is scarce. The present study applies the DFC method to neuroimaging data collected from 30 participants who completed a resting-state run followed by two runs of sustained attention to response task (SART) with embedded probes indicating a high prevalence of MW. The analysis identified five DFC states. Differences between rest and task were noted in the frequency of three DFC states. One DFC state characterized by negative DN-CEN/SN connectivity along with positive CEN-SN connectivity was more frequently observed during task vs. rest. Two DFC states, one of which was characterized by weaker connectivity between networks, were more frequently observed during rest than task. These findings suggest that the dynamic relationships between brain networks may vary as a function of whether ongoing cognitive activity unfolds in an "unconstrained" manner during rest or is "constrained" by task demands.


Subject(s)
Attention/physiology , Connectome/methods , Fantasy , Nerve Net/physiology , Rest/physiology , Adult , Executive Function , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Psychomotor Performance/physiology , Rest/psychology , Young Adult
20.
Brain Struct Funct ; 224(5): 1897-1909, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31062161

ABSTRACT

The integrity of white matter architecture in the human brain is related to cognitive processing abilities. The corpus callosum is the largest white matter bundle interconnecting the two cerebral hemispheres. "Split-brain" patients in whom all cortical commissures have been severed to alleviate intractable epilepsy demonstrate remarkably intact cognitive abilities despite the lack of this important interhemispheric pathway. While it has often been speculated that there are compensatory alterations in the remaining interhemispheric fibers in split-brain patients several years post-commissurotomy, this has never been directly shown. Here we examined extra-callosal pathways for interhemispheric communication in the brain of a patient who underwent complete cerebral commissurotomy using diffusion weighted imaging tractography. We found that compared with a healthy age-matched comparison group, the split-brain patient exhibited increased fractional anisotropy (FA) of the dorsal and ventral pontine decussations of the cortico-cerebellar interhemispheric pathways. Few differences were observed between the patient and the comparison group with respect to FA of other long-range intrahemispheric fibers. These results point to specific cerebellar anatomical substrates that may account for the spared interhemispheric coordination and intact cognitive abilities that have been extensively documented in this unique patient.


Subject(s)
Corpus Callosum/pathology , Diffusion Magnetic Resonance Imaging , Fornix, Brain/physiopathology , Neural Pathways/pathology , Aged , Anisotropy , Brain Mapping , Cerebrum/pathology , Cerebrum/physiopathology , Corpus Callosum/physiopathology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Fornix, Brain/pathology , Humans , Neural Pathways/physiopathology , Neuropsychological Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...