Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1125060, 2023.
Article in English | MEDLINE | ID: mdl-36970616

ABSTRACT

Introduction and Methods: Chronic wounds are a major healthcare problem, but their healing may be improved by developing biomaterials which can stimulate angiogenesis, e.g. by activating the Hypoxia Inducible Factor (HIF) pathway. Here, novel glass fibres were produced by laser spinning. The hypothesis was that silicate glass fibres that deliver cobalt ions will activate the HIF pathway and promote the expression of angiogenic genes. The glass composition was designed to biodegrade and release ions, but not form a hydroxyapatite layer in body fluid. Results and Discussion: Dissolution studies demonstrated that hydroxyapatite did not form. When keratinocyte cells were exposed to conditioned media from the cobalt-containing glass fibres, significantly higher amounts of HIF-1α and Vascular Endothelial Growth Factor (VEGF) were measured compared to when the cells were exposed to media with equivalent amounts of cobalt chloride. This was attributed to a synergistic effect of the combination of cobalt and other therapeutic ions released from the glass. The effect was also much greater than the sum of HIF-1α and VEGF expression when the cells were cultured with cobalt ions and with dissolution products from the Co-free glass, and was proven to not be due to a rise in pH. The ability of the glass fibres to activate the HIF-1 pathway and promote VEGF expression shows the potential for their use in chronic wound dressings.

2.
J Am Ceram Soc ; 105(3): 1671-1684, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35875405

ABSTRACT

We propose a novel image analysis framework to automate analysis of X-ray microtomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture. Therefore, being able to monitor sintering in 3D over time (termed 4D) is important when developing new porous ceramics or glasses. Synchrotron X-ray tomographic imaging allows in situ, real-time capture of the sintering process at both micro and macro scales using a furnace rig, facilitating 4D quantitative analysis of the process. The proposed image analysis framework is capable of tracking and quantifying the densification of glass or ceramic particles within multiple volumes of interest (VOIs) along with structural changes over time using 4D image data. The framework is demonstrated by 4D quantitative analysis of bioactive glass ICIE16 within a 3D-printed scaffold. Here, densification of glass particles within 3 VOIs were tracked and quantified along with diameter change of struts and interstrut pore size over the 3D image series, delivering new insights on the sintering mechanism of ICIE16 bioactive glass particles in both micro and macro scales.

3.
Biomater Res ; 25(1): 1, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33451366

ABSTRACT

BACKGROUND: Bioactive glasses are traditionally associated with bonding to bone through a hydroxycarbonate apatite (HCA) surface layer but the release of active ions is more important for bone regeneration. They are now being used to deliver ions for soft tissue applications, particularly wound healing. Cobalt is known to simulate hypoxia and provoke angiogenesis. The aim here was to develop new bioactive glass compositions designed to be scaffold materials to locally deliver pro-angiogenic cobalt ions, at a controlled rate, without forming an HCA layer, for wound healing applications. METHODS: New melt-derived bioactive glass compositions were designed that had the same network connectivity (mean number of bridging covalent bonds between silica tetrahedra), and therefore similar biodegradation rate, as the original 45S5 Bioglass. The amount of magnesium and cobalt in the glass was varied, with the aim of reducing or removing calcium and phosphate from the compositions. Electrospun poly(ε-caprolactone)/bioactive glass composites were also produced. Glasses were tested for ion release in dissolution studies and their influence on Hypoxia-Inducible Factor 1-alpha (HIF-1α) and expression of Vascular Endothelial Growth Factor (VEGF) from fibroblast cells was investigated. RESULTS: Dissolution tests showed the silica rich layer differed depending on the amount of MgO in the glass, which influenced the delivery of cobalt. The electrospun composites delivered a more sustained ion release relative to glass particles alone. Exposing fibroblasts to conditioned media from these composites did not cause a detrimental effect on metabolic activity but glasses containing cobalt did stabilise HIF-1α and provoked a significantly higher expression of VEGF (not seen in Co-free controls). CONCLUSIONS: The composite fibres containing new bioactive glass compositions delivered cobalt ions at a sustained rate, which could be mediated by the magnesium content of the glass. The dissolution products stabilised HIF-1α and provoked a significantly higher expression of VEGF, suggesting the composites activated the HIF pathway to stimulate angiogenesis.

4.
Materials (Basel) ; 12(17)2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31443540

ABSTRACT

: Additive manufacturing of bioactive glasses has recently attracted high interest in the field of regenerative medicine as a versatile class of fabrication methods to process bone substitute materials. In this study, melt-derived glass particles from the SiO2-P2O5-CaO-MgO-Na2O-K2O system were used to fabricate bioactive scaffolds with graded porosity by robocasting. A printable ink made of glass powder and Pluronic F-127 (binder) was extruded into a grid-like three-dimensional structure with bimodal porosity, i.e., the inner part of the scaffold had macropores with smaller size compared to the periphery. The crystallization behavior of the glass powder was studied by hot-stage microscopy, differential thermal analysis, and X-ray diffraction; the scaffolds were sintered at a temperature below the onset of crystallization so that amorphous structures could be obtained. Scaffold architecture was investigated by scanning electron microscopy and microtomographic analysis that allowed quantifying the microstructural parameters. In vitro tests in Kokubo's simulated body fluid (SBF) confirmed the apatite-forming ability (i.e., bioactivity) of the scaffolds. The compressive strength was found to slightly decrease during immersion in SBF up to 4 weeks but still remained comparable to that of human cancellous bone. The pH and concentration of released ions in SBF were also measured at each time point. Taken together, these results (favorable porosity, mechanical strength, and in vitro bioactivity) show great promise for the potential application of these robocast scaffolds in bone defect repair.

5.
Materials (Basel) ; 11(12)2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30486411

ABSTRACT

In powder bed fusion additive manufacturing, the powder feedstock quality is of paramount importance; as the process relies on thin layers of powder being spread and selectively melted to manufacture 3D metallic components. Conventional powder quality assessments for additive manufacturing are limited to particle morphology, particle size distribution, apparent density and flowability. However, recent studies are highlighting that these techniques may not be the most appropriate. The problem is exacerbated when studying aluminium powders as their complex cohesive behaviors dictate their flowability. The current study compares the properties of three different AlSi7Mg powders, and aims to obtain insights about the minimum required properties for acceptable powder feedstock. In addition to conventional powder characterization assessments, the powder spread density, moisture sorption, surface energy, work of cohesion, and powder rheology, were studied. This work has shown that the presence of fine particles intensifies the pick-up of moisture increasing the total particle surface energy as well as the inter-particle cohesion. This effect hinders powder flow and hence, the spreading of uniform layers needed for optimum printing. When spherical particles larger than 48 µm with a narrow particle distribution are present, the moisture sorption as well as the surface energy and cohesion characteristics are decreased enhancing powder spreadability. This result suggest that by manipulating particle distribution, size and morphology, challenging powder feedstock such as Al, can be optimized for powder bed fusion additive manufacturing.

6.
Acta Biomater ; 57: 449-461, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28457960

ABSTRACT

A challenge in using bioactive melt-derived glass in bone regeneration is to produce scaffolds with interconnected pores while maintaining the amorphous nature of the glass and its associated bioactivity. Here we introduce a method for creating porous melt-derived bioactive glass foam scaffolds with low silica content and report in vitro and preliminary in vivo data. The gel-cast foaming process was adapted, employing temperature controlled gelation of gelatin, rather than the in situ acrylic polymerisation used previously. To form a 3D construct from melt derived glasses, particles must be fused via thermal processing, termed sintering. The original Bioglass® 45S5 composition crystallises upon sintering, altering its bioactivity, due to the temperature difference between the glass transition temperature and the crystallisation onset being small. Here, we optimised and compared scaffolds from three glass compositions, ICIE16, PSrBG and 13-93, which were selected due to their widened sintering windows. Amorphous scaffolds with modal pore interconnect diameters between 100-150µm and porosities of 75% had compressive strengths of 3.4±0.3MPa, 8.4±0.8MPa and 15.3±1.8MPa, for ICIE16, PSrBG and 13-93 respectively. These porosities and compressive strength values are within the range of cancellous bone, and greater than previously reported foamed scaffolds. Dental pulp stem cells attached to the scaffold surfaces during in vitro culture and were viable. In vivo, the scaffolds were found to regenerate bone in a rabbit model according to X-ray micro tomography imaging. STATEMENT OF SIGNIFICANCE: This manuscript describes a new method for making scaffolds from bioactive glasses using highly bioactive glass compositions. The glass compositions have lower silica content that those that have been previously made into amorphous scaffolds and they have been designed to have similar network connectivity to that of the original (and commercially used) 45S5 Bioglass. The aim was to match Bioglass' bioactivity. The scaffolds retain the amorphous nature of bioactive glass while having an open pore structure and compressive strength similar to porous bone (the original 45S5 Bioglass crystallises during sintering, which can cause reduced bioactivity or instability). The new scaffolds showed unexpectedly rapid bone regeneration in a rabbit model.


Subject(s)
Bone Regeneration , Ceramics/chemistry , Dental Pulp/metabolism , Glass/chemistry , Stem Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Cell Line , Dental Pulp/pathology , Female , Humans , Porosity , Rabbits , Stem Cells/pathology
7.
Anal Chem ; 89(1): 847-853, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27983789

ABSTRACT

We investigated the feasibility of using spatially offset Raman spectroscopy (SORS) for nondestructive characterization of bone tissue engineering scaffolds. The deep regions of these scaffolds, or scaffolds implanted subcutaneously in live animals, are typically difficult to measure by confocal Raman spectroscopy techniques because of the limited depth penetration of light caused by the high level of light scattering. Layered samples consisting of bioactive glass foams (IEIC16), three-dimensional (3D)-printed biodegradable poly(lactic-co-glycolic acid) scaffolds (PLGA), and hydroxyapatite powder (HA) were used to mimic nondestructive detection of biomineralization for intact real-size 3D tissue engineering constructs. SORS spectra were measured with a new SORS instrument using a digital micromirror device (DMD) to allow software selection of the spatial offsets. The results show that HA can be reliably detected at depths of 0-2.3 mm, which corresponds to the maximum accessible spatial offset of the current instrument. The intensity ratio of Raman bands associated with the scaffolds and HA with the spatial offset depended on the depth at which HA was located. Furthermore, we show the feasibility for in vivo monitoring mineralization of scaffold implanted subcutaneously by demonstrating the ability to measure transcutaneously Raman signals of the scaffolds and HA (fresh chicken skin used as a top layer). The ability to measure spectral depth profiles at high speed (5 s acquisition time) and the ease of implementation make SORS a promising approach for noninvasive characterization of cell/tissue development in vitro, and for long-term in vivo monitoring the mineralization in 3D scaffolds subcutaneously implanted in small animals.


Subject(s)
Bone and Bones/chemistry , Durapatite/analysis , Tissue Engineering , Biocompatible Materials/analysis , Lactic Acid/chemistry , Particle Size , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Spectrum Analysis, Raman
8.
J Mater Chem B ; 4(36): 6032-6042, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-32263492

ABSTRACT

Bioglass® was the first synthetic material capable of bonding with bone without fibrous encapsulation, and fulfils some of the criteria of an ideal synthetic bone graft. However, it is brittle and toughness is required. Here, we investigated hybrids consisting of co-networks of high cross-linking density polymethacrylate and silica (class II hybrid) as a potential new generation of scaffold materials. Poly(3-(methoxysilyl)propyl methacrylate) (pTMSPMA) and tetraethyl orthosilicate (TEOS) were used as sol-gel precursors and hybrids were synthesised with different inorganic to organic ratios (Ih). The hybrids were nanoporous, with a modal pore diameter of 1 nm. At Ih = 50%, the release of silica was controlled by varying the molecular weight of pTMSPMA while retaining a specific surface area above 100 m2 g-1. Strain to failure increased to 14.2%, for Ih = 50% using a polymer of 30 kDa, compared to 4.5% for pure glass. The modulus of toughness (UT) increased from 0.73 (pure glass) to 2.64 GPa. Although, the hybrid synthesised in this report did not contain calcium, pTMSPMA/SiO2 hybrid was found to nucleate bone-like mineral on its surface after 1 week of immersion in simulated body fluid (SBF), whereas pure silica sol-gel glass did not. This increase in apatite forming ability was due to the ion-dipole complexation of calcium with the ester moieties of the polymer that were exposed after release of soluble silica from TEOS. No adverse cytotoxicity for MC3T3-E1 osteoblast-like cells was detected and improved cell attachment was observed, compared to a pure silica gel. pTMSPMA/SiO2 hybrids have potential for the regeneration of hard tissue as they overcome the major drawbacks of pure inorganic substrates while retaining cell attachment.

SELECTION OF CITATIONS
SEARCH DETAIL
...