Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005157

ABSTRACT

The laser powder bed fusion (L-PBF) process provides the cellular microstructure (primary α phase surrounded by a eutectic Si network) inside hypo-eutectic Al-Si alloys. The microstructure changes to the particle-dispersed microstructure with heat treatments at around 500 °C. The microstructural change leads to a significant reduction in the tensile strength. However, the microstructural descriptors representing the cellular and particle-dispersed microstructures have not been established, resulting in difficulty in terms of discussion regarding the structure-property relationship. In this study, an attempt was made to analyze the microstructure in L-PBF-built and subsequently heat-treated Al-12Si (mass%) alloys using the persistent homology, which can analyze the spatial distributions and connections of secondary phases. The zero-dimensional persistent homology revealed that the spacing between adjacent Si particles was independent of Si particle size in the as-built alloy, whereas fewer Si particles existed near large Si particles in the heat-treated alloy. Furthermore, the first principal component of a one-dimensional persistent homology diagram would represent the microstructural characteristics from cellular to particle-dispersed morphology. These microstructural descriptors were strongly correlated with the tensile and yield strengths. This study provides a new insight into the microstructural indices describing unique microstructures in L-PBF-built alloys.

2.
Sci Rep ; 13(1): 20372, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989841

ABSTRACT

Additive manufacturing of as-build metal materials with laser powder bed fusion typically leads to the formations of various chemical phases and their corresponding microstructure types. Such microstructures have very complex shape and size anisotropic distributions due to the history of the laser heat gradients and scanning patterns. With higher complexity compared to the post-heat-treated materials, the synthetic volume reconstruction of as-build materials for accurate modelling of their mechanical properties is a serious challenge. Here, we present an example of complete workflow pipeline for such nontrivial task. It takes into account the statistical distributions of microstructures: object sizes for each phase, several shape parameters for each microstructure type, and their morphological and crystallographic orientations. In principle, each step in the pipeline, including the parameters in the crystal plasticity model, can be fine-tuned to achieve suitable correspondence between experimental and synthetic microstructures as well as between experimental stress-strain curves and simulated results. To our best knowledge, this work represents an example of the most challenging synthetic volume reconstruction for as-build additive manufacturing materials to date.

SELECTION OF CITATIONS
SEARCH DETAIL
...