Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microscopy (Oxf) ; 72(3): 236-242, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-36322406

ABSTRACT

We propose hybrid phase modulation (PM)/frequency modulation (FM) atomic force microscopy (AFM) to increase the imaging speed of AFM in high-Q environments. We derive the relationship between the phase shift, the frequency shift and the tip-sample interaction force from the equation of motion for the cantilever in high-Q environments. The tip-sample conservative force is approximately given by the sum of the conservative force with respect to the phase shift in the PM mode and that with respect to the frequency shift in the FM mode. We preliminarily demonstrate that the hybrid PM/FM-AFM is a new and very promising AFM operation mode that can increase imaging speed.


Subject(s)
Microscopy, Atomic Force , Microscopy, Atomic Force/methods
2.
Nat Commun ; 12(1): 536, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33500402

ABSTRACT

Bolometers are rectification devices that convert electromagnetic waves into direct current voltage through a temperature change. A superconducting bolometer has a responsivity of approximately 106-107 V/W under cryogenic temperatures at infrared wavelengths; however, no devices have realized such a high responsivity in the sub-GHz frequency region. We describe a spin bolometer with a responsivity of (4.40 ± 0.04) × 106 V/W in the sub-GHz region at room temperature using heat generated in magnetic tunnel junctions through auto-oscillation. We attribute the unexpectedly high responsivity to a heat-induced spin-torque. This spin-torque modulates and synchronizes the magnetization precession due to the spin-torque auto-oscillation and produces a large voltage output. In our device, heat-induced spin-torque was obtained because of a large heat-controlled magnetic anisotropy change: -2.7 µJ/Wm, which is significant for enhancing dynamic range and responsivity. This study can potentially lead to the development of highly sensitive microwave detectors in the sub-GHz region.

3.
J Phys Condens Matter ; 32(38): 384001, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32574153

ABSTRACT

We studied nonlinear magnetic anisotropy changes to the DC bias voltage of magnetic tunnel junctions (MTJs) with capping layers of different thermal resistances. We found that increasing the thickness of MgO capping layers (in the range 0.3-0.5 nm) in MTJs enhances the Joule heating-induced magnetic anisotropy change, which indicates an enhancement of the interfacial thermal resistance at the FeB|MgO capping layer interface. This enhanced interfacial thermal resistance may be attributed to roughness at the FeB|MgO interface. Moreover, we observed a larger power-driven magnetic anisotropy change of 3.21 µJ W-1m-1 in the MTJ with a composite MgO (0.3 nm)|W (2 nm)|MgO (0.4 nm) capping layer. This research supports methods of efficient spin manipulation of spintronic devices such as microwave devices and magnetic memories.

4.
Ultramicroscopy ; 191: 51-55, 2018 08.
Article in English | MEDLINE | ID: mdl-29803917

ABSTRACT

We investigated a method to obtain a stable contrast mode on the TiO2(110) surface. The stable contrast rate is approximately 95% with a W-coated Si cantilever, which demonstrates that a stable tip apex plays an important role to obtain the real geometry of the surface during atomic force microscopy measurement. Information related to surface structure and tunnelling current on the TiO2(110) surface can be obtained by the W-coated Si cantilever. It is possible to investigate the electronic structure and surface potential on the TiO2(110) surface with atomic resolution. In particular, the proposed method could be widely applied to investigate the catalytic activity and the mechanism of a catalytic reaction by a metal-coated tip in the future.

5.
Nanotechnology ; 27(20): 205702, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27067038

ABSTRACT

We present an experimental study of coexisting p(2 × 1) and c(6 × 2) phases on an oxygen-terminated Cu(110) surface by noncontact atomic force microscopy (NC-AFM) at 78 K. Ball models of the growth processes of coexisting p(2 × 1)/c(6 × 2) phases on a terrace and near a step are proposed. We found that the p(2 × 1) and c(6 × 2) phases are grown from the super Cu atoms on both sides of O-Cu-O rows of an atomic spacing. In this paper, we summarize our investigations of an oxygen-terminated Cu(110) surface by NC-AFM employing O- and Cu-terminated tips. Also, we state several problems and issues for future investigation.

6.
Nanotechnology ; 26(12): 125701, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25736463

ABSTRACT

In magnetic force microscopy (MFM), the tip-sample distance should be reduced to analyze the microscopic magnetic domain structure with high spatial resolution. However, achieving a small tip-sample distance has been difficult because of superimposition of interaction forces such as van der Waals and electrostatic forces induced by the sample surface. In this study, we propose a new method of MFM using ferromagnetic resonance (FMR) to extract only the magnetic field near the sample surface. In this method, the magnetization of a magnetic cantilever is modulated by FMR to separate the magnetic field and topographic structure. We demonstrate the modulation of the magnetization of the cantilever and the identification of the polarities of a perpendicular magnetic medium.

7.
Phys Rev Lett ; 96(10): 106104, 2006 Mar 17.
Article in English | MEDLINE | ID: mdl-16605765

ABSTRACT

The controversial issue of the origin of the p(2 x 1) reconstruction of the Si(001) surface observed in recent low temperature scanning tunneling microscopy experiments is clarified here using 5 K noncontact atomic force microscopy. The c(4 x 2) phase is observed at separations corresponding to weak tip-surface interactions, confirming that it is the ground state of the surface. At larger frequency shifts the p(2 x 1) phase of symmetric dimers is observed. By studying the interaction of a reactive Si tip with the c(4 x 2) Si(001) surface using an ab initio method, we find that the observed change in the surface reconstruction is an apparent effect caused by tip induced dimer flipping resulting in a modification of the surface structure and appearance of the p(2 x 1) phase in the image. Using an appropriate scanning protocol, one can manipulate the surface reconstruction at will, which has significance in nanotechnology.

SELECTION OF CITATIONS
SEARCH DETAIL
...