Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Nat Commun ; 15(1): 4442, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789435

ABSTRACT

Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.


Subject(s)
Bacterial Proteins , Bacteriophages , Spores, Bacterial , Streptomyces , Streptomyces/virology , Bacteriophages/genetics , Bacteriophages/physiology , Spores, Bacterial/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phylogeny , Viral Proteins/metabolism , Viral Proteins/genetics , Viral Tail Proteins/metabolism , Viral Tail Proteins/genetics
2.
Syst Appl Microbiol ; 47(4): 126515, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38776610

ABSTRACT

A novel anaerobic, thermophilic bacterium of the class Atribacteria, strain M15T, was isolated from a high-temperature gas reservoir, Japan. Cells of strain M15T were gram-negative, short oval-shaped, and lacked flagella. Growth occurred at 45-75 °C (optimum 70-75 °C) and pH 6.5-8.5 (optimum pH 7.5-8.0) and was fast under optimal conditions (doubling time 11.4 h). Yeast extract was required for growth. Fermentative growth with glucose, arabinose, xylose, and cellobiose was observed. The major fermentative end products of glucose were acetate and hydrogen. The major cellular fatty acids were C16:0, iso-C15:0, and C18:0. The genomic G + C content was 46.0 mol%. Fluorescence and electron microscopy observations revealed the intracellular localization of genomic DNA surrounded by a membrane in the cells of strain M15T as reported in a sole validly described species of the class Atribacteria in the phylum Atribacterota, Atribacter laminatus strain RT761T, suggesting that the unique morphological traits are widely shared in this class. Phylogenetic analyses indicated that strain M15T belongs to a distinct family-level lineage in the class Atribacteria and shows low similarities to Atribacter laminatus strain RT761T (16S rRNA gene sequence identity of 90.1 %, average nucleotide identity [ANI] of 66.1 %, average amino acid identity [AAI] of 55.8 %). Phenotypic traits of strain M15T (thermophilic, fast-growing, relatively high G + C content, etc.) were clearly distinct from A. laminatus. Based on these phenotypic and genomic properties, we propose a novel genus and species, Atrimonas thermophila gen. nov., sp. nov. for strain M15T (=JCM39389T, =KCTC25731T) representing a novel family Atrimonadaceae fam., nov. in the class Atribacteria.

3.
Hum Vaccin Immunother ; 20(1): 2337987, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38658133

ABSTRACT

There is a growing interest in development of novel vaccines against respiratory tract infections, due to COVID-19 pandemic. Here, we examined mucosal adjuvanticity and the mucosal booster effect of membrane vesicles (MVs) of a novel probiotic E. coli derivative lacking both flagella and potentially carcinogenic colibactin (ΔflhDΔclbP). ΔflhDΔclbP-derived MVs showed rather strong mucosal adjuvanticity as compared to those of a single flagellar mutant strain (ΔflhD-MVs). In addition, glycoengineered ΔflhDΔclbP-MVs displaying serotype-14 pneumococcal capsular polysaccharide (CPS14+MVs) were well-characterized based on biological and physicochemical parameters. Subcutaneous (SC) and intranasal (IN) booster effects of CPS14+MVs on systemic and mucosal immunity were evaluated in mice that have already been subcutaneously prime-immunized with the same MVs. With a two-dose regimen, an IN boost (SC-IN) elicited stronger IgA responses than homologous prime-boost immunization (SC-SC). With a three-dose regimen, serum IgG levels were comparable among all tested regimens. Homologous immunization (SC-SC-SC) elicited the highest IgM responses among all regimens tested, whereas SC-SC-SC failed to elicit IgA responses in blood and saliva. Furthermore, serum IgA and salivary SIgA levels were increased with an increased number of IN doses administrated. Notably, SC-IN-IN induced not only robust IgG response, but also the highest IgA response in both serum and saliva among the groups. The present findings suggest the potential of a heterologous three-dose administration for building both systemic and mucosal immunity, e.g. an SC-IN-IN vaccine regimen could be beneficial. Another important observation was abundant packaging of colibactin in MVs, suggesting increased applicability of ΔflhDΔclbP-MVs in the context of vaccine safety.


Subject(s)
Adjuvants, Immunologic , Escherichia coli , Immunity, Mucosal , Immunization, Secondary , Mice, Inbred BALB C , Polyketides , Probiotics , Animals , Mice , Probiotics/administration & dosage , Escherichia coli/immunology , Immunization, Secondary/methods , Female , Adjuvants, Immunologic/administration & dosage , Immunoglobulin A , Peptides/immunology , Administration, Intranasal , Immunoglobulin G/blood , Immunoglobulin M , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage
4.
Environ Sci Technol ; 58(10): 4670-4679, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38411077

ABSTRACT

Bacteria utilize electron conduction in their communities to drive their metabolism, which has led to the development of various environmental technologies, such as electrochemical microbial systems and anaerobic digestion. It is challenging to measure the conductivity among bacterial cells when they hardly form stable biofilms on electrodes. This makes it difficult to identify the biomolecules involved in electron conduction. In the present study, we aimed to identify c-type cytochromes involved in electron conduction in Shewanella oneidensis MR-1 and examine the molecular mechanisms. We established a colony-based bioelectronic system that quantifies bacterial electrical conductivity, without the need for biofilm formation on electrodes. This system enabled the quantification of the conductivity of gene deletion mutants that scarcely form biofilms on electrodes, demonstrating that c-type cytochromes, MtrC and OmcA, are involved in electron conduction. Furthermore, the use of colonies of gene deletion mutants demonstrated that flavins participate in electron conduction by binding to OmcA, providing insight into the electron conduction pathways at the molecular level. Furthermore, phenazine-based electron transfer in Pseudomonas aeruginosa PAO1 and flavin-based electron transfer in Bacillus subtilis 3610 were confirmed, indicating that this colony-based system can be used for various bacteria, including weak electricigens.


Subject(s)
Flavins , Shewanella , Electrochemistry , Flavins/metabolism , Electrons , Cytochromes/metabolism , Electron Transport , Shewanella/chemistry , Shewanella/genetics , Shewanella/metabolism
5.
Environ Microbiol Rep ; 16(1): e13221, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037543

ABSTRACT

Denitrification in oxic environments occurs when a microorganism uses nitrogen oxides as terminal electron acceptors even though oxygen is available. While this phenomenon is well-established, its consequences on ecological and evolutionary processes remain poorly understood. We hypothesize here that denitrification in oxic environments can modify the accumulation profiles of nitrogen oxide intermediates with cascading effects on the evolutionary potentials of denitrifying microorganisms. To test this, we performed laboratory experiments with Paracoccus denitrificans and complemented them with individual-based computational modelling. We found that denitrification in low oxic environments significantly increases the accumulation of nitrite and nitric oxide. We further found that the increased accumulation of these intermediates has a negative effect on growth at low pH. Finally, we found that the increased negative effect at low pH increases the number of individuals that contribute to surface-associated growth. This increases the amount of genetic diversity that is preserved from the initial population, thus increasing the number of genetic targets for natural selection to act upon and resulting in higher evolutionary potentials. Together, our data highlight that denitrification in low oxic environments can affect the ecological processes and evolutionary potentials of denitrifying microorganisms by modifying the accumulation of nitrogen oxide intermediates.


Subject(s)
Denitrification , Nitric Oxide , Humans , Nitrites , Nitrous Oxide , Nitrogen
6.
PNAS Nexus ; 2(7): pgad207, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37404834

ABSTRACT

Applications in chemistry, biology, medicine, and engineering require the large-scale manipulation of a wide range of chemicals, samples, and specimens. To achieve maximum efficiency, parallel control of microlitre droplets using automated techniques is essential. Electrowetting-on-dielectric (EWOD), which manipulates droplets using the imbalance of wetting on a substrate, is the most widely employed method. However, EWOD is limited in its capability to make droplets detach from the substrate (jumping), which hinders throughput and device integration. Here, we propose a novel microfluidic system based on focused ultrasound passing through a hydrophobic mesh with droplets resting on top. A phased array dynamically creates foci to manipulate droplets of up to 300 µL. This platform offers a jump height of up to 10 cm, a 27-fold improvement over conventional EWOD systems. In addition, droplets can be merged or split by pushing them against a hydrophobic knife. We demonstrate Suzuki-Miyaura cross-coupling using our platform, showing its potential for a wide range of chemical experiments. Biofouling in our system was lower than in conventional EWOD, demonstrating its high suitability for biological experiments. Focused ultrasound allows the manipulation of both solid and liquid targets. Our platform provides a foundation for the advancement of micro-robotics, additive manufacturing, and laboratory automation.

7.
Microbes Environ ; 38(2)2023.
Article in English | MEDLINE | ID: mdl-37302844

ABSTRACT

Streptococcus mutans is a major caries-causing bacterium that forms firmly attached biofilms on tooth surfaces. Biofilm formation by S. mutans consists of polysaccharide-dependent and polysaccharide-independent processes. Among polysaccharide-independent processes, extracellular DNA (eDNA) mediates the initial attachment of cells to surfaces. We previously reported that the secreted peptide signal, competence-stimulating peptide (CSP) induced cell death in a subpopulation of cells, leading to autolysis-mediated eDNA release. The autolysin gene lytF, the expression of which is stimulated by CSP, has been shown to mediate CSP-dependent cell death, while cell death was not entirely abolished in the lytF deletion mutant, indicating the involvement of other factors. To identify novel genes involved in CSP-dependent cell death, we herein compared transcriptomes between live and dead cells derived from an isogenic population. The results obtained revealed the accumulation of several mRNAs in dead cells. The deletion of SMU_1553c, a putative bacteriocin gene, resulted in significant reductions in CSP-induced cell death and eDNA production levels from those in the parental strain. Moreover, in the double mutant strain of lytF and SMU_1553c, cell death and eDNA production in response to synthetic CSP were completely abolished under both planktonic and biofilm conditions. These results indicate that SMU_1553c is a novel cell death-related factor that contributes to CSP-dependent cell death and eDNA production.


Subject(s)
DNA , Streptococcus mutans , Streptococcus mutans/genetics , Cell Death , Cell Communication , Biofilms
8.
Microbiol Spectr ; 11(3): e0122223, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37154718

ABSTRACT

Bacterial cells form and release membrane vesicles (MVs) originating from cellular membranes. In recent years, many biological functions of bacterial MVs have been identified. Here, we show that MVs derived from Corynebacterium glutamicum, a model organism for mycolic acid-containing bacteria, can mediate iron acquisition and other phylogenetically related bacteria. Lipid/protein analysis and iron quantification assay indicate that C. glutamicum MVs formed by outer mycomembrane blebbing can load ferric iron (Fe3+) as its cargo. Iron-loaded C. glutamicum MVs promoted the growth of producer bacteria in iron-limited liquid media. MVs were received by C. glutamicum cells, suggesting a direct transfer of iron to the recipient cells. Cross-feeding of C. glutamicum MVs with phylogenetically close (Mycobacterium smegmatis and Rhodococcus erythropolis) or distant (Bacillus subtilis) bacteria indicated that C. glutamicum MVs could be received by the different species tested, while iron uptake is limited to M. smegmatis and R. erythropolis. In addition, our results indicate that iron loading on MVs in C. glutamicum does not depend on membrane-associated proteins or siderophores, which is different from what has been shown in other mycobacterial species. Our findings illustrate the biological importance of MV-associated extracellular iron for C. glutamicum growth and suggest its ecological impact on selected members of microbial communities. IMPORTANCE Iron is an essential element of life. Many bacteria have developed iron acquisition systems, such as siderophores, for external iron uptake. Corynebacterium glutamicum, a soil bacterium known for its potential for industrial applications, was shown to lack the ability to produce extracellular, low-molecular-weight iron carriers, and it remains elusive how this bacterium acquires iron. Here, we demonstrated that MVs released from C. glutamicum cells could act as extracellular iron carriers that mediate iron uptake. Although MV-associated proteins or siderophores have been shown to play critical roles in MV-mediated iron uptake by other mycobacterial species, the iron delivery through C. glutamicum MVs is not dependent on these factors. Moreover, our results suggest that there is an unidentified mechanism that determines the species specificity of MV-mediated iron acquisition. Our results further demonstrated the important role of MV-associated iron.


Subject(s)
Corynebacterium glutamicum , Iron , Iron/metabolism , Corynebacterium glutamicum/metabolism , Siderophores/metabolism , Cell Membrane/metabolism , Bacteria/metabolism
9.
Bio Protoc ; 13(8): e4652, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37113333

ABSTRACT

Genetic strategies such as gene disruption and fluorescent protein tagging largely contribute to understanding the molecular mechanisms of biological functions in bacteria. However, the methods for gene replacement remain underdeveloped for the filamentous bacteriaLeptothrix cholodniiSP-6. Their cell chains are encased in sheath composed of entangled nanofibrils, which may prevent the conjugation for gene transfer. Here, we describe a protocol optimized for gene disruption through gene transfer mediated by conjugation withEscherichia coliS17-1 with details on cell ratio, sheath removal, and loci validation. The obtained deletion mutants for specific genes can be used to clarify the biological functions of the proteins encoded by the target genes. Graphical overview.

10.
mSphere ; 8(3): e0011423, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37039698

ABSTRACT

Contractile injection systems (CISs) are a large group of phage tail-like nanostructures conserved among bacteria. Despite their wide distribution, the biological significance of CISs in bacteria remains largely unclear except for a few unicellular bacteria. Here, we show that Streptomyces lividans-a model organism of filamentous Gram-positive bacteria with highly conserved CIS-related gene clusters-produces intracellular CIS-like nanostructures (Streptomyces phage tail-like particles [SLPs]) that affect phenotypes of this bacterium under hyperosmotic conditions. In contrast to typical CISs released from the cells, SLPs are localized in the cytoplasm of S. lividans. In addition, loss of SLPs leads to (i) delayed erection of aerial mycelia on hyperosmotic solid medium and (ii) decreased growth during the transition from exponential growth phase to stationary phase in hyperosmotic liquid medium. Localization of fluorescent protein-tagged SLPs showed partial correlation with cell wall synthesis-related proteins, including MreB, an actin-like cytoskeleton protein. Our pulldown assay and subsequent quantitative proteome analysis also suggest that 30S ribosomal proteins and cell wall-related proteins, including MreB, are coeluted with SLPs. Furthermore, an interaction assay using the recombinant proteins revealed a direct interaction between a sheath protein of SLP and ribosomal protein S16. Results of cross-linking experiments show indirect interactions between SLPs and translation elongation factors. These findings collectively suggest that SLPs are directly or indirectly associated with a protein interaction network within the cytoplasm of S. lividans and that SLP loss ultimately affects the susceptibility of the bacterium to certain stress conditions. IMPORTANCE Recent bioinformatic analyses have revealed that CIS-related gene clusters are highly conserved in Gram-positive actinomycetes, especially members of the genus Streptomyces known for their ability to produce therapeutic antibiotics. While typical CISs are released from the cells and can act as protein translocation systems that inject effector proteins into the target cells, our results indicate the unique intracellular localization of SLPs, CIS-related nanostructures produced by S. lividans. In addition, the direct and indirect interactions of SLPs with cytoplasmic proteins and SLP localization within specific regions of mycelia suggest that the biological significance of SLPs is related to intracellular processes. Further, SLP loss leads to increased susceptibility of S. lividans to osmotic stress, suggesting that production of these phage tail-like nanostructures ultimately affects the fitness of the bacterium under certain stress conditions. This work will provide new insight into the phage tail-like nanostructures highly conserved in Streptomyces species.


Subject(s)
Bacteriophages , Streptomyces , Streptomyces lividans/genetics , Streptomyces lividans/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Osmotic Pressure , Streptomyces/genetics , Bacteriophages/metabolism
11.
Nucleic Acids Res ; 51(9): 4536-4554, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36951104

ABSTRACT

Genome-encoded antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F subfamily (ARE-ABCFs) mediate intrinsic resistance in diverse Gram-positive bacteria. The diversity of chromosomally-encoded ARE-ABCFs is far from being fully experimentally explored. Here we characterise phylogenetically diverse genome-encoded ABCFs from Actinomycetia (Ard1 from Streptomyces capreolus, producer of the nucleoside antibiotic A201A), Bacilli (VmlR2 from soil bacterium Neobacillus vireti) and Clostridia (CplR from Clostridium perfringens, Clostridium sporogenes and Clostridioides difficile). We demonstrate that Ard1 is a narrow spectrum ARE-ABCF that specifically mediates self-resistance against nucleoside antibiotics. The single-particle cryo-EM structure of a VmlR2-ribosome complex allows us to rationalise the resistance spectrum of this ARE-ABCF that is equipped with an unusually long antibiotic resistance determinant (ARD) subdomain. We show that CplR contributes to intrinsic pleuromutilin, lincosamide and streptogramin A resistance in Clostridioides, and demonstrate that C. difficile CplR (CDIF630_02847) synergises with the transposon-encoded 23S ribosomal RNA methyltransferase Erm to grant high levels of antibiotic resistance to the C. difficile 630 clinical isolate. Finally, assisted by uORF4u, our novel tool for detection of upstream open reading frames, we dissect the translational attenuation mechanism that controls the induction of cplR expression upon an antibiotic challenge.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Genes, Bacterial , Gram-Positive Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Clostridioides difficile/drug effects , Clostridioides difficile/genetics , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/genetics , Nucleosides/chemistry , Nucleosides/pharmacology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Clostridium/drug effects , Clostridium/genetics , Cryoelectron Microscopy
12.
Appl Environ Microbiol ; 89(4): e0191922, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36951572

ABSTRACT

The bacterium Leptothrix cholodnii generates cell chains encased in sheaths that are composed of woven nanofibrils. The nanofibrils are mainly composed of glycoconjugate repeats, and several glycosyltransferases (GTs) are required for its biosynthesis. However, only one GT (LthA) has been identified to date. In this study, we screened spontaneous variants of L. cholodnii SP6 to find those that form smooth colonies, which is one of the characteristics of sheathless variants. Genomic DNA sequencing of an isolated variant revealed an insertion in the locus Lcho_0972, which encodes a putative GT family 8 protein. We thus designated this protein LthB and characterized it using deletion mutants and antibodies. LthB localized adjacent to the cell envelope. ΔlthB cell chains were nanofibril free and thus sheathless, indicating that LthB is involved in nanofibril biosynthesis. Unlike the ΔlthA mutant and the wild-type strain, which often generate planktonic cells, most ΔlthB organisms presented as long cell chains under static conditions, resulting in deficient pellicle formation, which requires motile planktonic cells. These results imply that sheaths are not required for elongation of cell chains. Finally, calcium depletion, which induces cell chain breakage due to sheath loss, abrogated the expression of LthA, but not LthB, suggesting that these GTs cooperatively participate in glycoconjugate biosynthesis under different signaling controls. IMPORTANCE In recent years, the regulation of cell chain elongation of filamentous bacteria via extracellular signals has attracted attention as a potential strategy to prevent clogging of water distribution systems and filamentous bulking of activated sludge in industrial settings. However, a fundamental understanding of the ecology of filamentous bacteria remains elusive. Since sheath formation is associated with cell chain elongation in most of these bacteria, the molecular mechanisms underlying nanofibril sheath formation, including the intracellular signaling cascade in response to extracellular stimuli, must be elucidated. Here, we isolated a sheathless variant of L. cholodnii SP6 and thus identified a novel glycosyltransferase, LthB. Although mutants with deletions of lthA, encoding another GT, and lthB were both defective for nanofibril formation, they exhibited different phenotypes of cell chain elongation and pellicle formation. Moreover, LthA expression, but not LthB expression, was influenced by extracellular calcium, which is known to affect nanofibril formation, indicating the functional diversities of LthA and LthB. Such molecular insights are critical for a better understanding of ecology of filamentous bacteria, which, in turn, can be used to improve strategies to control filamentous bacteria in industrial facilities.


Subject(s)
Glycosyltransferases , Leptothrix , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Leptothrix/physiology , Calcium/metabolism , Sequence Analysis, DNA , Glycoconjugates/metabolism
13.
Microbiol Spectr ; 10(6): e0216522, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36383005

ABSTRACT

Bacterial cells release nanometer-sized extracellular membrane vesicles (MVs) to deliver cargo molecules for use in mediating various biological processes. However, the detailed processes of transporting these cargos from MVs to recipient cells remain unclear because of the lack of imaging techniques to image nanometer-sized fragile vesicles in a living bacterial cell surface. Herein, we quantitatively demonstrated that the direct binding of MV to the cell surface significantly promotes hydrophobic quorum-sensing signal (C16-HSL) transportation to the recipient cells. Moreover, we analyzed the MV-binding process in the Paracoccus denitrificans cell surface using high-speed atomic force microscopy phase imaging. Although MV shapes were unaltered after binding to the cell surface, the physical properties of a group of single MV particles were shifted. Additionally, the phase shift values of MVs were higher than that of the cell's surfaces upon binding, whereas the phase shift values of the group of MVs were decreased during observation. The shifting physical properties occurred irreversibly only once for each MV during the observations. The decreasing phase shift values indicated alterations of chemical components in the MVs as well, thereby suggesting the dynamic process in which single MV particles deliver their hydrophobic cargo into the recipient cell. IMPORTANCE Compared to the increasing knowledge about MV release mechanisms from donor cells, the mechanism by which recipient cells receive cargo from MVs remains unknown. Herein, we have successfully imaged single MV-binding processes in living bacterial cell surfaces. Accordingly, we confirmed the shift in the MV hydrophobic properties after landing on the cell surface. Our results showed the detailed states and the attaching process of a single MV into the cell surface and can aid the development of a new model for MV reception into Gram-negative bacterial cell surfaces. The insight provided by this study is significant for understanding MV-mediated cell-cell communication mechanisms. Moreover, the AFM technique presented for nanometer-scaled mapping of dynamic physical properties alteration on a living cell could be applied for the analyses of various biological phenomena occurring on the cell surface, and it gives us a new view into the understanding of the phenotypes of the bacterial cell surface.


Subject(s)
Quorum Sensing , Cell Membrane , Biological Transport
14.
Appl Environ Microbiol ; 88(23): e0134122, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36416549

ABSTRACT

The bacterium Leptothrix cholodnii generates filaments encased in a sheath comprised of woven nanofibrils. In static liquid culture, L. cholodnii moves toward the air-liquid interface, where it forms porous pellicles. Observations of aggregation at the interface reveal that clusters consisting of only a few bacteria primarily grow by netting free cells. These growing clusters hierarchically enlarge through the random docking of other small clusters. We find that the bacteria swim using their polar flagellum toward the interface, where their sheath assists them in intertwining with others and thereby promotes the formation of small clusters. In contrast, sheathless hydrophobic mutant cells get stuck to the interface. We find that the nanofibril sheath is vital for robust pellicle formation as it lowers cell surface hydrophobicity by 60%, thereby reducing their adsorption and enabling cells to move toward and stick together at the air-liquid interface. IMPORTANCE Efficient and sustainable management of water resources is becoming a fundamental issue for supporting growing populations and for developing economic activity. Fundamental to this management is the treatment of wastewater. Microorganisms are the active component of activated sludge that is employed in the biodegradation process of many wastewater treatment facilities. However, uncontrolled growth of filamentous bacteria such as Sphaerotilus often results in filamentous bulking, lowering the efficiency of water treatment systems. To prevent this undesirable condition, strategies based on a fundamental understanding of the ecology of filamentous bacteria are required. Although the filamentous bacterium Leptothrix cholodnii, which is closely related to Sphaerotilus, is a minor inhabitant of activated sludge, its complete genome sequence is known, making gene manipulation relatively easy. Moreover, L. cholodnii generates porous pellicles under static conditions, which may be a characteristic of filamentous bulking. We show that both swimming motility and nanofibril-mediated air-liquid interface attachment are required for porous pellicle formation. These insights are critical for a better understanding of the characteristics of filamentous bulking and might improve strategies to control activated sludge.


Subject(s)
Leptothrix , Sewage/microbiology , Porosity , Wastewater , Bacteria/metabolism
15.
mBio ; 13(6): e0195722, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36374091

ABSTRACT

Extracellular electron transfer (EET) is a process via which certain microorganisms, such as bacteria, exchange electrons with extracellular materials by creating an electrical link across their membranes. EET has been studied for the reactions on solid materials such as minerals and electrodes with implication in geobiology and biotechnology. EET-capable bacteria exhibit broad phylogenetic diversity, and some are found in environments with various types of electron acceptors/donors not limited to electrodes or minerals. Oxygen has also been shown to serve as the terminal electron acceptor for EET of Pseudomonas aeruginosa and Faecalibacterium prausnitzii. However, the physiological significance of such oxygen-terminating EETs, as well as the mechanisms underlying them, remain unclear. In order to understand the physiological advantage of oxygen-terminating EET and its link with energy metabolism, in this review, we compared oxygen-terminating EET with aerobic respiration, fermentation, and electrode-terminating EET. We also summarized benefits and limitations of oxygen-terminating EET in a biofilm setting, which indicate that EET capability enables bacteria to create a niche in the anoxic zone of aerobic biofilms, thereby remodeling bacterial metabolic activities in biofilms.


Subject(s)
Electrons , Oxygen , Oxygen/metabolism , Phylogeny , Electron Transport/physiology , Bacteria/metabolism , Electrodes , Biofilms , Minerals
16.
J Gen Appl Microbiol ; 68(2): 79-86, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35418538

ABSTRACT

Paenibacillus polymyxa is a spore-forming Gram-positive bacterial species. Both its sporulation process and the spore properties are poorly understood. Here, we investigated sporulation in P. polymyxa ATCC39564. When cultured at 37℃ for 24 h in sporulation medium, more than 80% of the total cells in the culture were spores. Time-lapse imaging revealed that cellular morphological changes during sporulation of P. polymyxa were highly similar to those of B. subtilis. We demonstrated that genetic deletion of spo0A, sigE, sigF, sigG, or sigK, which are highly conserved transcriptional regulators in spore forming bacteria, abolished spore formation. In P. polymyxa, spo0A was required for cell growth in sporulation medium, as well as for the initiation of sporulation. The sigE and sigF mutants formed abnormal multiple asymmetric septa during the early stage of sporulation. The sigG and sigK mutants formed forespores in the sporangium, but they did not become mature. Moreover, fluorescence reporter analysis confirmed compartment-specific gene expression of spoIID and spoVFA in the mother cell and spoIIQ and sspF in the forespore. Transmission electron microscopy imaging revealed that P. polymyxa produces multilayered endospores but lacking a balloon-shaped exosporium. Our results indicate that spore morphogenesis is conserved between P. polymyxa and B. subtilis. However, P. polymyxa genomes lack many homologues encoding spore-coat proteins that are found in B. subtills, suggesting that there are differences in the spore coat composition and surface structure between P. polymyxa and B. subtilis.


Subject(s)
Paenibacillus polymyxa , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Morphogenesis , Paenibacillus polymyxa/genetics , Paenibacillus polymyxa/metabolism , Spores, Bacterial/genetics , Transcription Factors/genetics
17.
Sci Rep ; 12(1): 3393, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233015

ABSTRACT

Membrane vesicles (MVs) are formed in various microorganisms triggered by physiological and environmental phenomena. In this study, we have discovered that the biogenesis of MV took place in the recombinant cell of Escherichia coli BW25113 strain that intracellularly accumulates microbial polyester, polyhydroxybutyrate (PHB). This discovery was achieved as a trigger of foam formation during the microbial PHB fermentation. The purified MVs were existed as a mixture of outer MVs and outer/inner MVs, revealed by transmission electron microscopy. It should be noted that there was a good correlation between MV formation and PHB production level that can be finely controlled by varying glucose concentrations, suggesting the causal relationship in both supramolecules artificially produced in the microbial platform. Notably, the controllable secretion of MV was governed spatiotemporally through the morphological change of the E. coli cells caused by the PHB intracellular accumulation. Based on a hypothesis of PHB internal-pressure dependent envelope-disorder induced MV biogenesis, here we propose a new Polymer Intracellular Accumulation-triggered system for MV Production (designated "PIA-MVP") with presenting a mechanistic model for MV biogenesis. The PIA-MVP is a promising microbial platform that will provides us with a significance for further study focusing on biopolymer capsulation and cross-membrane transportation for different application purposes.


Subject(s)
Escherichia coli , Polymers , Escherichia coli/metabolism , Fermentation , Hydroxybutyrates , Microscopy, Electron, Transmission , Polyesters/metabolism
18.
Front Microbiol ; 13: 720308, 2022.
Article in English | MEDLINE | ID: mdl-35185840

ABSTRACT

Clostridium botulinum produces botulinum neurotoxin complexes that cause botulism. Previous studies elucidated the molecular pathogenesis of botulinum neurotoxin complexes; however, it currently remains unclear whether other components of the bacterium affect host cells. Recent studies provided insights into the role of bacterial membrane vesicles (MVs) produced by some bacterial species in host immunity and pathology. We herein examined and compared the cellular effects of MVs isolated from four strains of C. botulinum with those of closely related Clostridium sporogenes and two strains of the symbiont Clostridium scindens. MVs derived from all strains induced inflammatory cytokine expression in intestinal epithelial and macrophage cell lines. Cytokine expression was dependent on myeloid differentiation primary response (MyD) 88 and TIR-domain-containing adapter-inducing interferon-ß (TRIF), essential adaptors for toll-like receptors (TLRs), and TLR1/2/4. The inhibition of actin polymerization impeded the uptake of MVs in RAW264.7 cells, however, did not reduce the induction of cytokine expression. On the other hand, the inhibition of dynamin or phosphatidylinositol-3 kinase (PI3K) suppressed the induction of cytokine expression by MVs, suggesting the importance of these factors downstream of TLR signaling. MVs also induced expression of Reg3 family antimicrobial peptides via MyD88/TRIF signaling in primary cultured mouse small intestinal epithelial cells (IECs). The present results indicate that MVs from C. botulinum and related clostridial species induce host innate immune responses.

19.
Microbes Environ ; 37(1)2022.
Article in English | MEDLINE | ID: mdl-35082176

ABSTRACT

Membrane vesicles (MVs) released from the bacterium Paracoccus denitrificans Pd1222 are enriched with the quorum sensing (QS) signaling molecule N-hexadecanoyl-l-homoserine lactone (C16-HSL). However, the biogenesis of MVs in Pd1222 remains unclear. Investigations on MV formation are crucial for obtaining a more detailed understanding of the dynamics of MV-assisted signaling. In the present study, live-cell imaging showed that P. denitrificans Pd1222 produced MVs through cell lysis under DNA-damaging conditions. DNA sequencing of MVs and a transcriptome ana-lysis of cells indicated that the expression of a prophage region was up-regulated at the onset of MV formation under DNA-damaging conditions. A further sequence ana-lysis identified a putative endolysin (Pden_0381) and holin (Pden_0382) in the prophage region. The expression of these genes was regulated by RecA. Using gene knockout mutants, we showed that prophage-encoded endolysin was critical for MV formation by P. denitrificans Pd1222 under DNA-damaging conditions. MV triggering by endolysin was dependent on the putative holin, which presumably transported endolysin to the periplasmic space. C16-HSL quantification revealed that more signals were released into the milieu as a consequence of the effects of endolysin. Using a QS reporter strain, we found that the QS response in P. denitrificans was stimulated by inducing the expression of endolysin. Collectively, these results provide novel insights into the mechanisms by which a bacterial cell-to-cell communication system is manipulated by phage genes.


Subject(s)
Bacteriophages , Paracoccus denitrificans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteriophages/genetics , Biological Transport , Paracoccus denitrificans/metabolism , Quorum Sensing
20.
iScience ; 24(12): 103404, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34849468

ABSTRACT

Denitrification supports anoxic growth of Pseudomonas aeruginosa in infections. Moreover, denitrification may provide oxygen (O2) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in Methylomirabilis oxyfera. To examine the prevalence of NO dismutation we studied O2 release by P. aeruginosa in airtight vials. P. aeruginosa rapidly depleted O2 but NO supplementation generated peaks of O2 at the onset of anoxia, and we demonstrate a direct role of NO in the O2 release. However, we were not able to detect genetic evidence for putative NO dismutases. The supply of endogenous O2 at the onset of anoxia could play an adaptive role when P. aeruginosa enters anaerobiosis. Furthermore, O2 generation by NO dismutation may be more widespread than indicated by the reports on the distribution of homologues genes. In general, NO dismutation may allow removal of nitrate by denitrification without release of the very potent greenhouse gas, nitrous oxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...