Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 109(4-5): 523-531, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33856592

ABSTRACT

KEY MESSAGE: Valine menthyl ester (ment-Val) acts as a plant defense potentiator for several crop species including soybean. Terpenoids, including menthol, exhibit potent abilities as plant defense potentiators in agriculture and horticulture. In the current study, we developed new terpene derivatives that consisted of menthol and various amino acids and that were expected to act as powerful plant defense potentiators. We used 6 amino acids possessing low-reactive sidechains to synthesize an array of amino acid ester of menthol (ment-aa) compounds. Transcript levels of two defense genes (pathogenesis-related protein 1 [PR1] and trypsin inhibitor [TI]) were evaluated in leaves of soybean plants 24 h after application of aquatic solution of menthol or menthol-aa, and revealed that the valine menthyl ester (ment-Val) alone elevated the transcript level of defense genes, and it did so only at the low dose of 1 µM, not at higher or lower doses tested. Moreover, it appeared that histone acetylation was involved in this effect. Application of ment-Val enabled soybean plants to sustain the increased transcript levels in their leaves for up to 3 days. Moreover, when ment-Val was additionally applied at day 4, at which time the transcript level had declined to the basal level, the transcript level was re-elevated, indicating the possibility that ment-Val could be repeatedly used to sustain pest control. Ment-Val was found to be chemically stable and effective for defense of several crop species. Collectively, these data show that terpenoid conjugates are useful for pest control instead of or in addition to pesticides.


Subject(s)
Amino Acids , Menthol , Esters , Menthol/chemistry , Menthol/pharmacology , Glycine max/genetics , Valine
2.
Plant Biotechnol (Tokyo) ; 37(1): 47-55, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32362748

ABSTRACT

Crop plants accumulate a large amount of storage starch and storage proteins in the endosperm. Genes involved in the biosynthesis of these substances work in concert during development of the rice endosperm. The rice flo2 mutant produces aberrant seeds with reduced grain quality. FLOURRY ENDOSPERM 2 (FLO2), the causative gene of the flo2 mutant, is considered to be a regulatory protein that controls the biosynthesis of seed storage substances. FLO2 contains tetratricopeptide repeat (TPR) motifs that may mediate protein-protein interactions. In this study, we identified the protein that interacts with the TPR motif of FLO2. We generated a transformant that produced the FLAG-tagged fusion FLO2 protein in the flo2 mutant and used this in the shotgun proteomic analysis. A protein, which we named FLOC1, interacted with FLO2. In vitro pull-down assays indicated that the TPR motif was involved in this interaction. A knock-down transformant of FLOC1 showed significantly reducted fertility and generation of seeds with abnormal features. These findings suggest that FLOC1 is involved not only in seed fertility but also in seed quality. These phenotypes were also observed on the RNAi transformants of the flo2 mutant although the effect of the flo2 mutation remained. these findings imply that there is a difference in the functions of FLO2 and FLOC1 although both of appear to be involved in the control of seed quality during seed formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...