Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells Dev ; 23(18): 2202-10, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24344904

ABSTRACT

Vascular endothelial growth factor (VEGF) is reported to exhibit potent hematopoietic stem/progenitor cell (HSPC) mobilization activity. However, the detailed mechanisms of HSPC mobilization by VEGF have not been examined. In this study, we investigated the effect of VEGF on bone marrow (BM) cell and the BM environment by intravenous injection of VEGF-expressing adenovirus vector (Ad-VEGF) into mice. A colony assay using peripheral blood cells revealed that plasma elevation of VEGF leads to the mobilization of HSPCs into the circulation. Granulocyte colony-stimulating factor (G-CSF) is known to mobilize HSPCs by decreasing CXC chemokine ligand 12 (CXCL12) levels in the BM. However, we found almost no changes in the CXCL12 levels in the BM after Ad-VEGF injection, suggesting that VEGF can alter the BM microenvironment by different mechanisms from G-CSF. Furthermore, flow cytometric analysis and colony forming unit-fibroblast assay showed a reduction in the number of mesenchymal progenitor cells (MPCs), which have been reported to serve as niche cells to support HSPCs, in the BM of Ad-VEGF-injected mice. Adhesion of donor cells to the recipient BM after transplantation was also impaired in mice injected with Ad-VEGF, suggesting a decrease in the niche cell number. We also observed a dose-dependent chemoattractive effect of VEGF on primary BM stromal cells in vitro. These data suggest that VEGF alters the distribution of MPCs in the BM and can also mobilize MPCs to peripheral tissues. Taken together, our results imply that VEGF-elicited egress of HSPCs would be mediated, in part, by changing the number of MPCs in the BM.


Subject(s)
Bone Marrow/metabolism , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Vascular Endothelial Growth Factor A/blood , Adenoviridae/metabolism , Animals , Cell Count , Cell Movement , Chemokine CXCL12/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Mice
2.
Mol Ther ; 20(1): 127-37, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22068426

ABSTRACT

Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity.


Subject(s)
Embryonic Stem Cells/cytology , Hepatocyte Nuclear Factor 4/genetics , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Transduction, Genetic , Cell Differentiation , Cell Line , Embryonic Stem Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Transfer Techniques , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-met/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...