Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 836: 137885, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914276

ABSTRACT

To investigate the precise mechanism of xenon (Xe), pharmacologically isolated AMPA/KA and NMDA receptor-mediated spontaneous (s) and evoked (e) excitatory postsynaptic currents (s/eEPSCAMPA/KA and s/eEPSCNMDA) were recorded from mechanically isolated single spinal sacral dorsal commissural nucleus (SDCN) neurons attached with glutamatergic nerve endings (boutons) using conventional whole-cell patch-clamp technique. We analysed kinetic properties of both s/eEPSCAMPA/KA and s/eEPSCNMDA by focal single- and/or paired-pulse electrical stimulation to compare them. The s/eEPSCNMDA showed smaller amplitude, slower rise time, and slower 1/e decay time constant (τDecay) than those of s/eEPSCAMPA/KA. We previously examined how Xe modulates s/eEPSCAMPA/KA, therefore, examined the effects on s/eEPSCNMDA in the present study. Xe decreased the frequency and amplitude of sEPSCNMDA, and decreased the amplitude but increased the failure rate and paired-pulse ratio of eEPSCNMDA without affecting their τDecay. It was concluded that Xe might suppress NMDA receptor-mediated synaptic transmission via both presynaptic and postsynaptic mechanisms.

2.
J Pharmacol Exp Ther ; 386(3): 331-343, 2023 09.
Article in English | MEDLINE | ID: mdl-37391223

ABSTRACT

The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Xenon , Rats , Animals , Rats, Wistar , Xenon/pharmacology , Xenon/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Neurons , Synaptic Transmission , Presynaptic Terminals/metabolism , Hippocampus/metabolism , Spinal Cord , Neurotransmitter Agents/metabolism
3.
J Pharmacol Exp Ther ; 384(1): 187-196, 2023 01.
Article in English | MEDLINE | ID: mdl-36272733

ABSTRACT

In "synapse bouton preparation" of rat hippocampal CA3 neurons, we examined how Xe and N2O modulate N-methyl-D-aspartate (NMDA) receptor-mediated spontaneous and evoked excitatory post-synaptic currents (sEPSCNMDA and eEPSCNMDA). This preparation is a mechanically isolated single neuron attached with nerve endings (boutons) preserving normal physiologic function and promoting the exact evaluation of sEPSCNMDA and eEPSCNMDA responses without influence of extrasynaptic, glial, and other neuronal tonic currents. These sEPSCs and eEPSCs are elicited by spontaneous glutamate release from many homologous glutamatergic boutons and by focal paired-pulse electric stimulation of a single bouton, respectively. The s/eEPSCAMPA/KA and s/eEPSCNMDA were isolated pharmacologically by their specific antagonists. Thus, independent contributions of pre- and postsynaptic responses could also be quantified. All kinetic properties of s/eEPSCAMPA/KA and s/eEPSCNMDA were detected clearly. The s/eEPSCNMDA showed smaller amplitude and slower rise and 1/e decay time constant (τ Decay) than s/eEPSCAMPA/KA Xe (70%) and N2O (70%) significantly decreased the frequency and amplitude without altering the τ Decay of sEPSCNMDA They also decreased the amplitude but increased the Rf and PPR without altering the τ Decay of the eEPSCNMDA These data show clearly that "synapse bouton preparation" can be an accurate model for evaluating s/eEPSCNMDA Such inhibitory effects of gas anesthetics are primarily due to presynaptic mechanisms. Present results may explain partially the powerful analgesic effects of Xe and N2O. SIGNIFICANCE STATEMENT: We could record pharmacologically isolated NMDA receptor-mediated spontaneous and (action potential-evoked) excitatory postsynaptic currents (sEPSCNMDA and eEPSCNMDA) and clearly detect all kinetic parameters of sEPSCNMDA and eEPSCNMDA at synaptic levels by using "synapse bouton preparation" of rat hippocampal CA3 neurons. We found that Xe and N2O clearly suppressed both sEPSCNMDA and eEPSCNMDA. Different from previous studies, present results suggest that Xe and N2O predominantly inhibit the NMDA responses by presynaptic mechanisms.


Subject(s)
N-Methylaspartate , Nitrous Oxide , Rats , Animals , Nitrous Oxide/pharmacology , N-Methylaspartate/pharmacology , Xenon/pharmacology , Rats, Wistar , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Receptors, N-Methyl-D-Aspartate , Synaptic Transmission
4.
Brain Res Bull ; 157: 51-60, 2020 04.
Article in English | MEDLINE | ID: mdl-31987927

ABSTRACT

Effects of xenon (Xe) on whole-cell currents induced by glutamate (Glu), its three ionotropic subtypes, and GABA, as well as on the fast synaptic glutamatergic and GABAergic transmissions, were studied in the mechanically dissociated "synapse bouton preparation" of rat spinal sacral dorsal commissural nucleus (SDCN) neurons. This technique evaluates pure single or multi-synapse responses from native functional nerve endings and enables us to quantify how Xe influences pre- and postsynaptic transmissions accurately. Effects of Xe on glutamate (Glu)-, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, kainate (KA)- and N-methyl-d-aspartate (NMDA)- and GABAA receptor-mediated whole-cell currents were investigated by the conventional whole-cell patch configuration. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were measured as spontaneous (s) and evoked (e) EPSCs and IPSCs. Evoked synaptic currents were elicited by paired-pulse focal electric stimulation. Xe decreased Glu, AMPA, KA, and NMDA receptor-mediated whole-cell currents but did not change GABAA receptor-mediated whole-cell currents. Xe decreased the frequency and amplitude but did not affect the 1/e decay time of the glutamatergic sEPSCs. Xe decreased the frequency without affecting the amplitude and 1/e decay time of GABAergic sIPSCs. Xe decreased the amplitude and increased the failure rate (Rf) and paired-pulse ratio (PPR) without altering the 1/e decay time of both eEPSC and eIPSC, suggesting that Xe acts on the presynaptic side of the synapse. The presynaptic inhibition was greater in eEPSCs than in eIPSCs. We conclude that Xe decreases glutamatergic and GABAergic spontaneous and evoked transmissions at the presynaptic level. The glutamatergic presynaptic responses are the main target of anesthesia-induced neuronal responses. In contrast, GABAergic responses minimally contribute to Xe anesthesia.


Subject(s)
Excitatory Postsynaptic Potentials/drug effects , Glutamic Acid/pharmacology , Inhibitory Postsynaptic Potentials/drug effects , Xenon/pharmacology , gamma-Aminobutyric Acid/pharmacology , Anesthetics, Inhalation/pharmacology , Animals , Neurons/drug effects , Presynaptic Terminals/drug effects , Rats, Wistar , Synaptic Transmission/physiology
5.
J Physiol ; 597(24): 5915-5933, 2019 12.
Article in English | MEDLINE | ID: mdl-31598974

ABSTRACT

KEY POINTS: Xenon (Xe) non-competitively inhibited whole-cell excitatory glutamatergic current (IGlu ) and whole-cell currents gated by ionotropic glutamate receptors (IAMPA , IKA , INMDA ), but had no effect on inhibitory GABAergic whole-cell current (IGABA ). Xe decreased only the frequency of glutamatergic spontaneous and miniature excitatory postsynaptic currents and GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude or decay times of these synaptic responses. Xe decreased the amplitude of both the action potential-evoked excitatory and the action potential-evoked inhibitory postsynaptic currents (eEPSCs and eIPSCs, respectively) via a presynaptic inhibition in transmitter release. We conclude that the main site of action of Xe is presynaptic in both excitatory and inhibitory synapses, and that the Xe inhibition is much greater for eEPSCs than for eIPSCs. ABSTRACT: To clarify how xenon (Xe) modulates excitatory and inhibitory whole-cell and synaptic responses, we conducted an electrophysiological experiment using the 'synapse bouton preparation' dissociated mechanically from the rat hippocampal CA3 region. This technique can evaluate pure single- or multi-synapse responses and enabled us to accurately quantify how Xe influences pre- and postsynaptic aspects of synaptic transmission. Xe inhibited whole-cell glutamatergic current (IGlu ) and whole-cell currents gated by the three subtypes of glutamate receptor (IAMPA , IKA and INMDA ). Inhibition of these ionotropic currents occurred in a concentration-dependent, non-competitive and voltage-independent manner. Xe markedly depressed the slow steady current component of IAMPA almost without altering the fast phasic IAMPA component non-desensitized by cyclothiazide. It decreased current frequency without affecting the amplitude and current kinetics of glutamatergic spontaneous excitatory postsynaptic currents and miniature excitatory postsynaptic currents. It decreased the amplitude, increasing the failure rate (Rf) and paired-pulse rate (PPR) without altering the current kinetics of glutamatergic action potential-evoked excitatory postsynaptic currents. Thus, Xe has a clear presynaptic effect on excitatory synaptic transmission. Xe did not alter the GABA-induced whole-cell current (IGABA ). It decreased the frequency of GABAergic spontaneous inhibitory postsynaptic currents without changing the amplitude and current kinetics. It decreased the amplitude and increased the PPR and Rf of the GABAergic action potential-evoked inhibitory postsynaptic currents without altering the current kinetics. Thus, Xe acts exclusively at presynaptic sites at the GABAergic synapse. In conclusion, our data indicate that a presynaptic decrease of excitatory transmission is likely to be the major mechanism by which Xe induces anaesthesia, with little contribution of effects on GABAergic synapses.


Subject(s)
Anesthetics, Inhalation/pharmacology , Excitatory Postsynaptic Potentials , GABAergic Neurons/drug effects , Inhibitory Postsynaptic Potentials , Xenon/pharmacology , Animals , CA3 Region, Hippocampal/cytology , Cells, Cultured , Female , GABAergic Neurons/physiology , Male , Rats , Rats, Wistar , Synapses/drug effects , Synapses/physiology
6.
J Neurophysiol ; 120(3): 1264-1273, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29897859

ABSTRACT

The current electrophysiological study investigated the functional roles of high- and low-voltage-activated Ca2+ channel subtypes on glutamatergic small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons. Experiments combining both the "synapse bouton" preparation and single-pulse focal stimulation technique were performed using the conventional whole cell patch configuration under voltage-clamp conditions. Nifedipine, at a high concentration, and BAY K 8644 inhibited and facilitated the glutamatergic excitatory postsynaptic currents (eEPSCs) that were evoked by 0.2-Hz stimulation, respectively. However, these drugs had no effects on spontaneous EPSCs (sEPSCs). Following the use of a high stimulation frequency of 3 Hz, however, nifedipine markedly inhibited eEPSCs at the low concentration of 0.3 µM. Moreover, ω-conotoxin GVIA and ω-agatoxin IVA significantly inhibited both sEPSCs and eEPSCs. Furthermore, SNX-482 slightly inhibited eEPSCs. R(-)-efonidipine had no effects on either sEPSCs or eEPSCs. It was concluded that glutamate release from SMFTs depends largely on Ca2+ entry through N- and P/Q-type Ca2+ channels and, to a lesser extent, on R-type Ca2+ channels. The contribution of L-type Ca2+ channels to eEPSCs was small at low-firing SMFTs but more significant at high-firing SMFTs. T-type Ca2+ channels did not appear to be involved in neurotransmission at SMFTs. NEW & NOTEWORTHY Action potential-evoked glutamate release from small mossy fiber nerve terminals (SMFTs) that synapse onto rat hippocampal CA3 neurons is regulated by high-threshold but not low-threshold Ca2+ channel subtypes. The functional contribution mainly depends on N- and P/Q-type Ca2+ channels and, to a lesser extent, on R-type Ca2+ channels. However, in SMFTs stimulated at a high 3-Hz frequency, L-type Ca2+ channels contributed significantly to the currents. The present results are consistent with previous findings from fluorometric studies of large mossy fiber boutons.


Subject(s)
Action Potentials , CA3 Region, Hippocampal/physiology , Calcium Channels/physiology , Glutamic Acid/physiology , Mossy Fibers, Hippocampal/physiology , Presynaptic Terminals/physiology , Animals , Electric Stimulation , Excitatory Postsynaptic Potentials , Rats, Wistar
7.
Eur J Pharmacol ; 718(1-3): 63-73, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24051267

ABSTRACT

We evaluated the effects of propofol on synaptic transmission using a mechanically dissociated preparation of rat hippocampal CA3 neurons to allow assays of single bouton responses evoked from retained functional native nerve endings. We studied synaptic and extrasynaptic GABAA and glutamate receptor responses in a preparation in which experimental solutions rapidly accessed synaptic terminals. Whole-cell responses were evoked by bath application of GABA and glutamate. Synaptic inhibitory and excitatory postsynaptic currents (IPSC and EPSC) were measured as spontaneous and evoked postsynaptic responses. Evoked currents were elicited by focal electrical stimulation. Propofol (1-100 µM) enhanced extrasynaptic GABAA-receptor mediated responses but the increase at clinically relevant concentrations (1 µM) were minor. In contrast, 1 µM propofol significantly increased both the amplitude and frequency of spontaneous IPSCs (sIPSCs) and increased the amplitudes of evoked IPSCs (eIPSCs) while decreasing failure rates (Rf) and paired-pulse ratios (PPR). Decay times of sIPSCs and eIPSCs were significantly prolonged. Although propofol had no effect on extrasynaptic glutamate responses, only supra-clinical propofol concentrations (≥ 10 µM) increased the spontaneous EPSCs (sEPSCs, amplitudes and frequencies) but suppressed evoked EPSCs (eEPSCs decreased amplitudes with increased Rf and PPR). The decay phases of sEPSCs and eEPSCs were not changed. The propofol-induced changes in sEPSCs and eEPSCs resulted from presynaptic GABAA receptor-mediated depolarization, because these actions were blocked by bicuculline. These results suggest that propofol acts at presynaptic and postsynaptic GABAA receptors within GABAergic synapses, but also increases extrasynaptic GABA responses. Our results expand the locus of propofol actions to GABAergic and glutamatergic synapses.


Subject(s)
Glutamic Acid/metabolism , Hippocampus/cytology , Neurons/cytology , Propofol/pharmacology , Synapses/drug effects , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism , Animals , Calcium/metabolism , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/physiology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Neurons/drug effects , Rats , Rats, Wistar , Sodium/metabolism , Synapses/physiology , Time Factors
8.
Brain Res Bull ; 99: 19-26, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24060848

ABSTRACT

Atrial and brain natriuretic peptides (ANP and BNP) exist in the central nervous system and modulate neuronal function, although the locus of actions and physiological mechanisms are still unclear. In the present study we used rat spinal sacral dorsal commissural nucleus (SDCN) and hippocampal 'synaptic bouton' preparations, to record both spontaneous and evoked glycinergic inhibitory postsynaptic currents (sIPSCs and eIPSCs) in SDCN neurons, and the evoked excitatory postsynaptic currents (eEPSCs) in hippocampal CA3 neurons. ANP potently and significantly reduced the sIPSC frequency without affecting the amplitude. ANP also potently reduced the eIPSCs amplitude concurrently increasing the failure rate and the paired pulse ratio response. These ANP actions were blocked by anantin, a specific type A natriuretic peptide receptor (NPR-A) antagonist. The results clearly indicate that ANP acts directly on glycinergic presynaptic nerve terminals to inhibit glycine release via presynaptic NPR-A. The ANP effects were not blocked by the membrane permeable cGMP analog (8Br-cGMP) suggesting a transduction mechanisms not simply related to increasing cGMP levels in nerve terminals. BNP did not affect on glycinergic sIPSCs and eIPSCs. Moreover, both ANP and BNP had no effect on glutamatergic EPSCs in hippocampal CA3 neurons. The results indicate a potent and selective presynaptic inhibitory action of ANP on glycinergic transmission in spinal cord sensory circuits.


Subject(s)
Atrial Natriuretic Factor/pharmacology , Glycine/metabolism , Neurons/drug effects , Presynaptic Terminals/drug effects , Spinal Cord/cytology , 4-Aminopyridine/pharmacology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Anesthetics, Local/pharmacology , Animals , Animals, Newborn , Atrial Natriuretic Factor/antagonists & inhibitors , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Hippocampus/cytology , Inhibitory Postsynaptic Potentials/drug effects , Lidocaine/analogs & derivatives , Lidocaine/pharmacology , Peptides, Cyclic/pharmacology , Potassium Channel Blockers/pharmacology , Presynaptic Terminals/physiology , Rats , Rats, Wistar , Thionucleotides/pharmacology
9.
Toxins (Basel) ; 5(1): 193-202, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23334671

ABSTRACT

The amounts of puffer toxin (tetrodotoxin, TTX) extracted from the fresh and the traditional Japanese salted and fermented "Nukazuke" and "Kasuzuke" ovaries of Takifugu stictonotus (T. stictonotus) were quantitatively analyzed in the voltage-dependent sodium current (I(Na)) recorded from mechanically dissociated single rat hippocampal CA1 neurons. The amount of TTX contained in "Nukazuke" and "Kasuzuke" ovaries decreased to 1/50-1/90 times of that of fresh ovary during a salted and successive fermented period over a few years. The final toxin concentration after fermentation was almost close to the TTX level extracted from T. Rubripes" fresh muscle that is normally eaten. It was concluded that the fermented "Nukazuke" and "Kasuzuke" ovaries of puffer fish T. Stictonotus are safe and harmless as food.


Subject(s)
Fermentation , Food Contamination/prevention & control , Inactivation, Metabolic , Ovary/metabolism , Tetraodontiformes/physiology , Tetrodotoxin/metabolism , Animals , Cells, Cultured , Female , Neurons/drug effects , Neurons/physiology , Ovary/chemistry , Patch-Clamp Techniques , Rats , Rats, Wistar , Sodium Channel Blockers/toxicity , Sodium Channels/drug effects , Tetrodotoxin/analysis , Tetrodotoxin/toxicity , Tissue Extracts/chemistry , Tissue Extracts/metabolism , Tissue Extracts/toxicity
10.
Brain Res Bull ; 90: 10-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23026118

ABSTRACT

Pentobarbital (PB) modulates GABA(A) receptor-mediated postsynaptic responses through various mechanisms, and can directly activate the channel at higher doses. These channels exist both pre- and postsynaptically, and on the soma outside the synapse. PB also inhibits voltage-dependent Na⁺ and Ca²âº channels to decrease excitatory synaptic transmission. Just how these different sites of action combine to contribute to the overall effects of PB on inhibitory and excitatory synaptic transmission is less clear. To compare these pre- and postsynaptic actions of PB, we used a 'synaptic bouton' preparation of isolated rat hippocampal CA3 pyramidal neurons where we could measure in single neurons the effects of PB on spontaneous and single bouton evoked GABAergic inhibitory and glutamatergic excitatory postsynaptic currents (sIPSCs, sEPSCs, eIPSCs and eEPSCs), respectively. Low (sedative) concentrations (3-10 µM) of PB increased the frequency and amplitude of sIPSCs and sEPSCs, and also presynaptically increased the amplitude of both eIPSCs and eEPSCs. There was no change in current kinetics at this low concentration. At higher concentrations (30-300 µM), PB decreased the frequency, and increased the amplitude of sIPSCs, and presynaptically decreased the amplitude of eIPSCs. The current decay phase of sIPSCs and eIPSCs was increased. An increase in both frequency and amplitude was seen for sEPSCs, while the eIPSCs was also decreased by a bicuculline-sensitive presynaptic effect. The results confirm the multiple sites of action of PB on inhibitory and excitatory transmission and demonstrate that the most sensitive site of action is on transmitter release, via effects on presynaptic GABA(A) receptors. At low concentrations, however, both glutamate and GABA release is similarly enhanced, making the final effects on neuronal excitability difficult to predict and dependent on the particular systems involved and/or on subtle differences in susceptibility amongst individuals. At higher concentrations, release of both transmitters is decreased, while the postsynaptic effects to increase IPSPs and decrease EPSCs would be expected to both results in reduced neuronal excitability.


Subject(s)
CA3 Region, Hippocampal/cytology , GABA Modulators/pharmacology , Neurons/cytology , Neurotransmitter Agents/metabolism , Pentobarbital/pharmacology , Presynaptic Terminals/drug effects , Animals , Animals, Newborn , Biophysical Phenomena/drug effects , Biophysics , Dose-Response Relationship, Drug , Electric Stimulation , Evoked Potentials/drug effects , Excitatory Postsynaptic Potentials/drug effects , Glutamic Acid/pharmacology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Neurons/drug effects , Rats , Rats, Wistar , Time Factors , gamma-Aminobutyric Acid/pharmacology
11.
J Pharmacol Exp Ther ; 341(3): 809-19, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22434676

ABSTRACT

Ethanol (EtOH) has a number of behavioral effects, including intoxication, amnesia, and/or sedation, that are thought to relate to the activation of GABA(A) receptors. However, GABA(A) receptors at different cellular locations have different sensitivities to EtOH. The present study used the "synaptic bouton" preparation where we could stimulate nerve endings on mechanically dissociated single rat hippocampal CA1 and CA3 pyramidal neurons and investigate the effects of EtOH on presynaptic and postsynaptic GABA(A) receptors. Low concentrations of EtOH (10 mM) had no effect on postsynaptic GABA(A) and glutamate receptors or voltage-dependent Na(+) and Ca(2+) channels. Higher concentrations (≥100 mM) could significantly inhibit these current responses. EtOH at 10 mM had no direct effect on inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs) evoked by focal stimulation of single boutons [evoked IPSCs (eIPSCs) and evoked EPSCs (eEPSCs)]. However, coapplication of 10 mM EtOH with muscimol decreased the amplitude of eIPSCs and eEPSCs and increased their paired-pulse ratio. The effects on eEPSCs were reversed by bicuculline. Coapplication of muscimol and EtOH significantly increased the frequency of spontaneous IPSCs and EPSCs. The EtOH effects on the postsynaptic responses and eEPSCs were similar in neurons from neonatal and mature rats. These results revealed that low concentrations of EtOH can potentiate the activation of presynaptic GABA(A) receptors to inhibit evoked GABA and glutamate release. These results indicate a high sensitivity of presynaptic GABA(A) receptor to EtOH, which needs to be accounted for when considering the cellular mechanisms of EtOH's physiological responses.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Ethanol/pharmacology , GABAergic Neurons/metabolism , Presynaptic Terminals/drug effects , Receptors, GABA-A/metabolism , Receptors, Glutamate/metabolism , Animals , Bicuculline/pharmacology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , Electric Stimulation , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Muscimol/pharmacology , Patch-Clamp Techniques , Presynaptic Terminals/metabolism , Rats , Rats, Wistar
12.
Toxicon ; 59(3): 385-92, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22227157

ABSTRACT

We observed the effects of tetanus toxin (TeNT) on spontaneous miniature and evoked postsynaptic currents at inhibitory (glycinergic) and excitatory (glutamatergic) synapses in SDCN of rat spinal cord, by use of 'synaptic bouton' preparations, under voltage clamp condition. TeNT (>10 pM) dose-dependently decreased the frequency without affecting amplitude of glycinergic spontaneous miniature IPSCs. However, TeNT (100 pM) had no effect on frequency or amplitude of glutamatergic spontaneous EPSCs. Focal paired electrical stimulation of 'synaptic boutons' elicited two consecutive glycinergic eIPSCs or glutamatergic eEPSCs with large amplitude and low failure rate (Rf). TeNT (100 pM) reduced the amplitude and increased the failure rate of the first glycinergic eIPSCs and greatly enhanced the ratio of the second to first (P2/P1) eIPSCs. Application of 4-AP restored glycinergic eIPSCs suppressed by TeNT (100 pM). However, TeNT (100 pM) had no effect on the amplitude, Rf or P2/P1 ratio of glutamatergic eEPSCs. These results show that TeNT pre-synaptically affects spontaneous and evoked, and inhibitory and excitatory neurotransmitter release differentially, thereby suggesting that molecular events underlying spontaneous and evoked, inhibitory and excitatory neurotransmitter release may be different in CNS, and that the release machinery becomes less sensitive to Ca²âº in TeNT poisoned 'synaptic boutons'.


Subject(s)
Excitatory Amino Acid Agents/pharmacology , Glycine Agents/pharmacology , Synapses/drug effects , Tetanus Toxin/pharmacology , Animals , Botulinum Toxins, Type A/toxicity , Dose-Response Relationship, Drug , Electric Stimulation/methods , Excitatory Postsynaptic Potentials , Miniature Postsynaptic Potentials , Neurons/drug effects , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Rats , Rats, Wistar , Spinal Cord/drug effects
13.
Brain Res Bull ; 84(1): 22-30, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21044903

ABSTRACT

We investigated the functional roles of presynaptic GABA(A) receptors on excitatory nerve terminals in contributing to spontaneous and action potential-evoked glutamatergic transmission to rat hippocampal CA3 pyramidal neurons. Single CA3 neurons were mechanically isolated with adherent nerve terminals, namely the 'synaptic bouton preparation', and spontaneous glutamatergic excitatory synaptic potentials (sEPSCs) and EPSCs evoked by focal electrical stimuli of a single presynaptic glutamatergic boutons (eEPSCs) were recorded using conventional whole-cell patch recordings. Selective activation of presynaptic GABA(A) receptors on these excitatory nerve terminals by muscimol, markedly facilitated sEPSCs frequency but inhibited eEPSC amplitude. The facilitation of sEPSC frequency was completely occluded by GABA(A) receptor-Cl⁻ channel blockers bicuculline or penicillin (PN). PN itself concentration-dependently inhibited the GABA(A) receptor response induced by bath application of muscimol, but had no effect on the glutamate receptor response. In addition, pretreatment with a blocker of the Na(+), K(+), 2Cl⁻ co-transporter type 1 (NKCC-1), bumetanide, prevented the muscimol-induced inhibition of eEPSCs. The results indicate that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic excitatory nerve terminals and thereby differentially modulates sEPSCs and eEPSCs.


Subject(s)
Glutamic Acid/metabolism , Presynaptic Terminals/physiology , Synaptic Transmission/physiology , Animals , Bicuculline/pharmacology , Bumetanide/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , GABA-A Receptor Agonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Hippocampus/cytology , Muscimol/pharmacology , Neurons/cytology , Neurons/drug effects , Neurons/physiology , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Rats , Rats, Wistar , Receptors, GABA-A/metabolism , Receptors, Glutamate/metabolism , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Synaptic Transmission/drug effects
14.
Toxicon ; 56(8): 1315-26, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20674584

ABSTRACT

We observed effects of newly developed A2 type botulinum toxin (A2NTX) on spontaneous miniature and evoked transmitter release from inhibitory (glycinergic or GABAergic), or excitatory (glutamatergic) nerve terminals in rat spinal cord, by use of 'synaptic bouton' preparations, under voltage-clamp condition. A2NTX (0.1-1 pM) initially augmented and then decreased amplitude and frequency of spontaneous miniature release of glycine or GABA (mIPSCs) concentration-dependently. At an increased concentration (1-10 pM), A2NTX suppressed the amplitude of glutamatergic mEPSCs. The rank order of the inhibitory effects was glycinergic > GABAergic >> glutamatergic synapses. Focal electrical stimulation of 'synaptic boutons' elicited eIPSC or eEPSC with larger amplitude and low failure rate (Rf). A2NTX (0.01-1 pM) initially enhanced the amplitude or decreased the failure rate of eIPSC or eEPSC, and then almost completely abolished the generation of eIPSC or eEPSC. The action of A2NTX on the evoked transmitter release was partially reversible. The rank order of the inhibitory effects on the amplitude or Rf were glycinergic eIPSC ≥ GABAergic eIPSC > glutamatergic eEPSCs. Excess extracellular K(+) or Ca(2+) (excess [K(+)](o) or [Ca(2+)](o)), and 4-AP restored spontaneous miniature glycinergic, GABAergic or glutamatergic postsynaptic currents suppressed by A2NTX. We conclude that A2NTX inhibits spontaneous miniature release at 0.1-10 pM and evoked release at 0.01-1 pM in rat spinal cord, and the inhibition was much efficient in the evoked rather than the spontaneous miniature release. Excess [K(+)](o), 4-AP and excess [Ca(2+)](o), which can raise the intracellular Ca(2+) concentration via the activation of voltage-dependent Ca(2+) channels, rescue the transmission suppressed by A2NTX poisoning, suggesting the transmitter release machinery became less sensitive to intracellular Ca(2+) in A2NTX poisoned 'synaptic boutons'.


Subject(s)
Botulinum Toxins, Type A/pharmacology , Evoked Potentials/drug effects , Neurotoxins/pharmacology , Spinal Cord/drug effects , Animals , Calcium Channels/drug effects , Glutamic Acid/metabolism , Glycine/metabolism , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Rats , Rats, Wistar , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism
15.
Toxicon ; 55(7): 1283-90, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20144644

ABSTRACT

The contributions of P- and R-type Ca2+ channels on glycinergic nerve endings (boutons) projecting to the rat spinal sacral commissural nucleus (SDCN) neurons are not understood. Thus, we investigated the functional role of P- and R-type Ca2+ channels by measuring the inhibitory postsynaptic currents (eIPSCs) evoked from individual nerve endings (boutons) by focal electrical stimulation. The current amplitude and failure rate (Rf) of glycinergic eIPSCs varied directly with changes in [Ca2+](o). Low concentration of omega-Aga IVA (P-type selective antagonist) suppressed eIPSCs as much as high concentration (both P- and Q-type selective) indicating little contribution of Q-type Ca2+ channels. Antagonism of R-type Ca2+ channels with SNX-482 and Ni2+ greatly decreased the current amplitude and increased failure rate (Rf) of glycinergic eIPSCs. Overall, our results suggest that the dominant control of glycine release depends on Ca2+ entry through P- and R-type Ca2+ channels that ubiquitously populate spinal glycine release sites.


Subject(s)
Calcium Channels, P-Type/physiology , Calcium Channels, R-Type/physiology , Glycine/physiology , Nerve Endings/physiology , Spinal Nerves/physiology , Animals , Calcium Channel Blockers/pharmacology , Data Interpretation, Statistical , Electrophysiology , Excitatory Postsynaptic Potentials/drug effects , Glutamates/physiology , Glycine/metabolism , Nickel/pharmacology , Patch-Clamp Techniques , Presynaptic Terminals/drug effects , Rats , Rats, Wistar , Spider Venoms/pharmacology , gamma-Aminobutyric Acid/physiology
16.
J Neurophysiol ; 101(2): 1103-13, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18842954

ABSTRACT

The effects of Ca2+, Sr2+, and Ba2+ on spontaneous and evoked glycinergic inhibitory postsynaptic currents (mIPSCs and eIPSCs) were studied using the "synaptic bouton" preparation of rat spinal neurons and conventional whole cell recording under voltage-clamp conditions. In response to application of Ca2+-free solution, the frequency of mIPSC initially rapidly decreased to 40 approximately 50% of control followed by a gradual further decline in mIPSC frequency to approximately 30% of control. Once mIPSC frequency had significantly decreased in Ca2+-free solution, application of Ca2+, Sr2+, or Ba2+ increased mIPSC frequency. The rank order of effect in restoring mIPSCs was Ba2+>>Ca2+>Sr2+. Moreover, the application of excess external [K+]o solution (30 mM) containing Sr2+ or Ba2+ after 2 h in Ca2+-free solution also increased mIPSC frequency in the order Sr2+>or==Ba2+>Ca2+. The mean mIPSC amplitude was not affected at all. In contrast, eIPSCs produced by focal stimulation of single boutons were completely abolished in Ca2+-free solution or when Ca2+ was replaced by Sr2+ or Ba2+ (2 mM each). However, eIPSCs were restored in increased concentrations of Sr2+ or Ba2+ (5 mM each). The results show that these divalent cations affect mIPSC and eIPSCs differently and indicate that the mechanisms underlying transmitter release that generates eIPSCs and mIPSC in presynaptic nerve terminals are different. The different mechanisms might be explained by the different sensitivity of synaptotagmin isoforms to Ca2+, Sr2+, and Ba2+.


Subject(s)
Cations, Divalent/pharmacology , Glycine/metabolism , Interneurons/drug effects , Spinal Cord/cytology , Animals , Animals, Newborn , Electric Stimulation/methods , Glycine Agents/pharmacology , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Isoquinolines/metabolism , Neural Inhibition/drug effects , Patch-Clamp Techniques , Rats , Rats, Wistar , Strychnine/pharmacology , Time Factors
17.
Brain Res ; 1157: 11-22, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-17555723

ABSTRACT

Molecular biology approaches have identified more than 70 different K+ channel genes that assemble to form diverse functional classes of K+ channels. Although functional K+ channels are present within presynaptic nerve endings, direct studies of their precise identity and function have been generally limited to large, specialized presynaptic terminals such as basket cell terminals and Calyx of Held. In the present study, therefore, we investigated the functional K+ channel subtypes on the small glycinergic nerve endings (< 1 microm diameter) projecting to spinal sacral dorsal commissural nucleus (SDCN) neurons. In the presence of TTX, whole-cell patch recording of mIPSCs was made from mechanically dispersed SDCN neurons in which functional nerve endings remain attached. Glycinergic responses were isolated by blocking glutamatergic and GABAergic inputs with CNQX, AP5 and bicuculline. The K+ channel blockers, 4-AP, TEA, delta-dendrotoxin, margatoxin, iberiotoxin, charybdotoxin and apamin, significantly increased 'spontaneous' mIPSC frequency without affecting mIPSC amplitude. The results suggest the existence of the following K+ channel subtypes on glycinergic nerve endings that are involved in regulating 'spontaneous' glycine release (mIPSCs): the Shaker-related K+ channels Kv1.1, Kv1.2, Kv1.3, Kv1.6 and Kv1.7 and the intracellular Ca2+ -sensitive K+ channels BKCa, IKCa and SKCa. Ca2+ channel blockers by themselves, including L-type (nifedipine), P/Q-type (omega-agatoxin IVA, AgTX) and N-type (omega-conotoxin GVIA, CgTX), did not alter the 'spontaneous' mIPSC frequency or amplitude, but inhibited the increase of the mIPSC frequency evoked by 4-AP, indicating the participation of L-, P/Q- and N-type Ca2+ channels regulating 'spontaneous' glycine release from the nerve terminals.


Subject(s)
Glycine/metabolism , Neural Inhibition/physiology , Neurons/metabolism , Potassium Channel Blockers/pharmacology , Potassium Channels/metabolism , Spinal Cord/metabolism , Animals , Calcium Channel Blockers/pharmacology , Calcium Channels/drug effects , Calcium Channels/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Neural Inhibition/drug effects , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/drug effects , Organ Culture Techniques , Patch-Clamp Techniques , Potassium Channels/drug effects , Potassium Channels, Calcium-Activated/drug effects , Potassium Channels, Calcium-Activated/metabolism , Potassium Channels, Voltage-Gated/drug effects , Potassium Channels, Voltage-Gated/metabolism , Presynaptic Terminals/drug effects , Presynaptic Terminals/metabolism , Rats , Rats, Wistar , Spinal Cord/cytology , Spinal Cord/drug effects , Synaptic Transmission/drug effects , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...