Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1427, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658507

ABSTRACT

Millimeter wave (mmWave) generation using photonic techniques has so far been limited to the use of near-infrared lasers that are down-converted to the mmWave region. However, such methodologies do not currently benefit from a monolithic architecture and suffer from the quantum defect i.e. the difference in photon energies between the near-infrared and mmWave region, which can ultimately limit the conversion efficiency. Miniaturized terahertz (THz) quantum cascade lasers (QCLs) have inherent advantages in this respect: their low energy photons, ultrafast gain relaxation and high nonlinearities open up the possibility of innovatively integrating both laser action and mmWave generation in a single device. Here, we demonstrate intracavity mmWave generation within THz QCLs over the unprecedented range of 25 GHz to 500 GHz. Through ultrafast time resolved techniques, we highlight the importance of modal phases and that the process is a result of a giant second-order nonlinearity combined with a phase matched process between the THz and mmWave emission. Importantly, this work opens up the possibility of compact, low noise mmWave generation using modelocked THz frequency combs.

2.
Light Sci Appl ; 9: 51, 2020.
Article in English | MEDLINE | ID: mdl-32257182

ABSTRACT

The use of fundamental modelocking to generate short terahertz (THz) pulses and THz frequency combs from semiconductor lasers has become a routine affair, using quantum cascade lasers (QCLs) as a gain medium. However, unlike classic laser diodes, no demonstrations of harmonic modelocking, active or passive, have been shown in THz QCLs, where multiple pulses per round trip are generated when the laser is modulated at the harmonics of the cavity's fundamental round-trip frequency. Here, using time-resolved THz techniques, we show for the first time harmonic injection and mode-locking in which THz QCLs are modulated at the harmonics of the round-trip frequency. We demonstrate the generation of the harmonic electrical beatnote within a QCL, its injection locking to an active modulation and its direct translation to harmonic pulse generation using the unique ultrafast nature of our approach. Finally, we show indications of self-starting harmonic emission, i.e., without external modulation, where the QCL operates exclusively on a harmonic (up to its 15th harmonic) of the round-trip frequency. This behaviour is supported by time-resolved simulations of induced gain and loss in the system and shows the importance of the electronic, as well as photonic, nature of QCLs. These results open up the prospect of passive harmonic modelocking and THz pulse generation, as well as the generation of low-noise microwave generation in the hundreds of GHz region.

3.
Nat Commun ; 9(1): 5181, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504849

ABSTRACT

The original version of this Article contained an error in the Acknowledgements, which incorrectly omitted the following: 'We also acknowledge support from the Australian Research Council's Discovery Projects Funding Scheme (Grant DP 160 103910).' This has been corrected in both the PDF and HTML versions of the Article.

4.
Nat Commun ; 9(1): 3076, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082762

ABSTRACT

Single-mode frequency-tuneable semiconductor lasers based on monolithic integration of multiple cavity sections are important components, widely used in optical communications, photonic integrated circuits and other optical technologies. To date, investigations of the ultrafast switching processes in such lasers, essential to reduce frequency cross-talk, have been restricted to the observation of intensity switching over nanosecond-timescales. Here, we report coherent measurements of the ultrafast switch-on dynamics, mode competition and frequency selection in a monolithic frequency-tuneable laser using coherent time-domain sampling of the laser emission. This approach allows us to observe hopping between lasing modes on picosecond-timescales and the temporal evolution of transient multi-mode emission into steady-state single mode emission. The underlying physics is explained through a full multi-mode, temperature-dependent carrier and photon transport model. Our results show that the fundamental limit on the timescales of frequency-switching between competing modes varies with the underlying Vernier alignment of the laser cavity.

5.
Opt Express ; 25(18): 21753-21761, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041469

ABSTRACT

Two-dimensional spectroscopy is performed on a terahertz (THz) frequency quantum cascade laser (QCL) with two broadband THz pulses. Gain switching is used to amplify the first THz pulse and the second THz pulse is used to probe the system. Fourier transforms are taken with respect to the delay time between the two THz pulses and the sampling time of the THz probe pulse. The two-dimensional spectrum consists of three peaks at (ωτ = 0, ωt = ω0), (ωτ = ω0, ωt = ω0), and (ωτ = 2ω0, ωt = ω0) where ω0 denotes the lasing frequency. The peak at ωτ = 0 represents the response of the probe to the zero-frequency (rectified) component of the instantaneous intensity and can be used to measure the gain recovery.

6.
Opt Express ; 24(19): 22319-33, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27661965

ABSTRACT

Dispersion control is a key objective in the field of photonics and spectroscopy, since it enhances non-linear effects by both enabling phase matching and offering slow light generation. In addition, it is essential for frequency comb generation, which requires a phase-lock mechanism that is provided by broadband compensation of group velocity dispersion (GVD). At optical frequencies, there are several well-established concepts for dispersion control such as prism or grating pairs. However, terahertz dispersion control is still a challenge, thus hindering further progress in the field of terahertz science and technology. In this work, we present a hybrid waveguide with both broadband, tuneable positive and more than octave-spanning negative terahertz GVD on the order of 10-22 s2/m, which is suitable for either intra- or extra cavity operation. This new terahertz device will enable ultra-short pulse compression, allow soliton propagation, improve frequency comb operation and foster the development of novel non-linear applications.

7.
Sci Rep ; 5: 16812, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26578287

ABSTRACT

The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically switched from an uncoupled to a strongly coupled regime by tuning the ISR with epitaxially grown transparent gate. The asymmetric potential in the HEMT structure enables ultrawide electrical tuning of ISR, which is an order of magnitude higher as compared to an equivalent square well. For a single heterojunction with a triangular confinement, we achieve an avoided splitting of 0.52 THz, which is a significant fraction of the bare intersubband resonance at 2 THz.

8.
J Phys Condens Matter ; 26(50): 505801, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25420072

ABSTRACT

We present a study on the intersublevel spacings of electrons and holes in a single layer of InAs self-assembled quantum dots. We use Fourier transform infrared transmission spectroscopy via a density chopping scheme for direct experimental observation of the intersublevel spacings of electrons without any external magnetic field. Epitaxial, complementary-doped and semi-transparent electrostatic gates are grown within the ultra high vacuum conditions of molecular beam epitaxy to voltage-tune the device, while a two dimensional electron gas (2DEG) serves as a back contact. Spacings of the hole sublevels are indirectly calculated from the photoluminescence spectrum by using a simple model given by Warburton et al [1]. Additionally, we observe that the intersubb and resonances of the 2DEG are enhanced due to the quantum dot layer on top of the device.

SELECTION OF CITATIONS
SEARCH DETAIL
...